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1 INTRODUCTION 

The purpose of this dissertation project is to develop a coarse mesh nodal 

method which can be used for solving the multigroup neutron transport equation 

in two dimensions. The solution technique which uses a least squares minimization 

principle is based upon the spherical harmonics approximation to the neutron trans­

port equation. A modular approach which can use different orders of the spherical 

harmonics approximation to the transport equation in the different nodes is also 

investigated. 

Reactor physics problems usually require solution of the diffusion equation and 

the neutron transport equation in a rigorous manner. Except for very ideal cases, 

both of these equations can be solved only by numerical means. Since the early 

times of nuclear engineering, the traditional techniques implemented for solving the 

transport and the diffusion equation numerically has been finite difference methods. 

These methods require discretization of the problem domain into very small mesh 

points. Both the abundance of the variables which require consideration in the 

solutions and the discretization of the domain into very small mesh points usually 

make these fine mesh methods impractical to implement for a large majority of the 

problems. This problem which persists in spite of rapid developments in computer 

hardware has prompted efforts for developing new alternatives to fine mesh methods. 
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The common goal in this new research area is to improve the efficiency in 

both computer storage requirements and computational speeds. Although the early 

efforts have been directed toward achieving only these two goals, the recent devel­

opments show that the new methods compete with the fine mesh methods in the 

accuracy area too. The important point in the success of all of these new methods 

is that they all use homogenous neutronic parameters for describing the f nite vol­

umes into which the reactor cores are divided. Due to the ability of implementing 

relatively large mesh sizes through these methods, they are also called coarse mesh 

numerical methods. Two major groups which form these coarse mesh methods are 

the finite element methods and the nodal methods. 
\ 

The finite element methods usually enjoy flexibility in solving problems in 

irregular domains. In contrast with that, the nodal methods usually require dis­

cretization of the problem domain into rectangular volumes. The advantage of the 

nodal methods is that they usually ensure neutron balance in the nodes. The earlier 

trends in the nodal methods have been to calculate only the average fluxes in the 

nodes and the multiplication factors. The recently developed nodal methods also 

provide local distributions of the fluxes. 

The method developed in this project aims at providing the local flux distri­

butions as well as the average nodal fluxes and the multiplication factors. It uses 

a least squares minimization principle for achieving its purpose. The neutron bal­

ance is provided through implementation of the boundary conditions in an integral 

sense. The local distributions of the fluxes are expressed in terms of fourth or­

der Legendre polynomials. The nodal method developed for solving the neutron 

transport equation uses the spherical harmonics expansion for approximating the 
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angular dependency of the neutron flux. Although this angular dependency can 

be approximated by various approaches, the spherical harmonics approach offers 

some advantages. If the even-parity form of the transport equation is used, the 

spherical harmonics approach provides a set of second order differential equations 

analogous to the diffusion equation for which the solution techniques are well es­

tablished. One other advantage is that the spherical harmonics approach does not 

suffer from the ray effects that the common discrete ordinates methods suffer. Al­

though the spherical harmonics method for approximating the neutron transport 

equation poses difficulties in developing the higher order differential equations, an 

alternative way for easing this difficulty is proposed in this dissertation. 
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2 LITERATURE REVIEW 

The modular nodal method developed in this dissertation has been constructed 

by utilizing the recent developments in related areas of nuclear engineering. This 

literature review section is intended to cover the major developments in the field. 

The material to be reviewed is classified into two groups. One group covers the 

developments in the spherical harmonics approximation to the neutron transport 

theory. Since the nodal method uses the spherical harmonics approximation to the 

neutron transport equation, the way the spherical harmonics are implemented gains 

importance. The other group of the reviewed literature covers the major works in 

the evolution of the nodal methods. The first part of that section is devoted to 

the progress in the nodal methods for the diffusion equation. In general, the nodal 

methods used for the transport equation are extensions of the methods developed 

for the diffusion equation. Therefore, the review of the diffusion theory methods 

becomes important. Finally some insight is given to the methods developed for the 

transport theory. 

2.1 The Spherical Harmonic Methods 

Although the spherical harmonic expansions have been used in other engineer­

ing fields before nuclear engineering, the first implementation of these expansions 
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for approximating the angular part of the angular neutron flux was done by C. 

Mark in 1944 [1,2]. He also proposed approximations for the boundary conditions 

for the spherical harmonics approach, called the Mark boundary conditions. An­

other important contribution to the spherical harmonics method came from R. E. 

Marshak in 1947 [3]. He proposed another type of approximate boundary condi­

tions for the spherical harmonics method called the Marshak boundary conditions. 

They became alternatives to the Mark conditions. B. Davison has clarified some 

points necessary for developing the boundary conditions and he showed the relation 

between the order of the spherical harmonics approximation and the number of the 

necessary boundary conditions for a general geometry [4|. 

Researchers kept working to develop the generalized boundary conditions for 

the spherical harmonics method. Pomraning and Clark attempted to develop the 

right boundary conditions by using variational methods [5]. J. A. Davis devel­

oped another variational principle providing the unique boundary conditions for 

the spherical harmonics approximation to the neutron transport equation [6]. An­

other variational principle developed by Vladimirov previously surfaced about the 

same time as the J. A. Davis's variational principle was published [7]. This same 

work also introduced the even parity form of the transport equation which is utilized 

in this dissertation. S. Kaplan and J. A. Davis have unified the various variational 

principles proposed for the transport equation through some transformations and 

showed that these variational principles in fact are related to each other [8]. 

Along with the developments at the theoretical front, the practical applications 

also began to surface in the form of the computer codes. One of the earlier codes, 

which solved the Pn and double Pn equations in slab geometry, was reported by 
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B. Anderson [9]. Another computer code for two dimensional Cartesian geometry 

for the third order approximation was developed by E. Gelbard in 1962 [10]. The 

code reported by R. Cast had the ability to go up to ninth order approximation 

in slab geometry [11]. P. Daitch reported another code developed for cylindrical 

geometry [12]. These first generation computer codes employing the spherical har­

monics approach were limited to a certain order. The complexity in developing the 

higher order equations for the multidimensional cases has been difficult. Due to this 

problem, the interest in the method has faded. A recent solution to that problem 

came from Fletcher [13-17]. He developed a computer routine for providing the 

second order spherical harmonic equations. For doing that, he assumed that the all 

scattering cross section terms higher than the first order are equal. Another recent 

work which also has the ability to generate the second order forms of the spherical 

harmonic equations automatically was reported by Kobayashi et al. [18]. 

2.2 Nodal Methods 

A new era in nuclear engineering started with the introduction of analyses of 

the reactor cores through computer simulations. The first real computer code in 

this new era was the PDQ program which was developed in 1957 [19]. That com­

puter code was based on a finite difference method. The experience in the new era 

of computers showed that the analyses of large reactor cores in three dimensions 

through the computational techniques using fine mesh discretization would be im­

practical. That prompted researchers to look at other alternatives which could give 

the means to analyze a large core in three dimensions. 

The first coarse mesh method which was developed as an alternative was the 
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FLARE code [20]. In this code, neutronic parameters of each fuel assembly was 

homogenized and each node also was used as a single node which in turn was coupled 

to the other nodes through coupling coefficients. These coupling coefficients were 

obtained by using experimental data from specific reactors for which the code was 

used. More information about these first generation nodal methods can be found 

in a review paper by Gupta [21]. 

A new generation of the nodal methods emerged in the early 1970s. Although 

these new modern nodal methods have been developed at difixèrent centers, they 

all have some common features. The unknowns in these methods are usually the 

nodal average fluxes and the net or the partial currents at the nodal surfaces. The 

relationship between the average nodal fluxes and the surface currents are obtained 

through one-dimensional calculations. These one-dimensional equations are ob­

tained through transverse integrations. The pioneer among these new methods has 

been the Nodal Synthesis Method developed by M. R. Wagner [22]. In this method, 

the flux has been assumed to be separable in a node. Then the one dimensional 

fine mesh calculations have been used for determining the coupling coefficients. A 

modification to this method later gave rise to the Nodal Expansion Method [23]. In 

this approach, the one-dimensional fine mesh calculations were replaced by a poly­

nomial approximation to the one dimensional flux. The real differences between 

the various nodal methods have been in choosing the method for solving the one 

dimensional equations. A nodal method which has been developed by R. A. Shober 

et al. used an analytical method for solving the one dimensional equation [24]. One 

other method which was reported by R. D. Lawrence has implemented the Green's 

function method for solving the one dimensional differential equation which was 
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obtained through a transverse integration [25]. The review papers by Wagner and 

Koebke [26] and R. D. Lawrence [27] can be used for locating more information 

about these new generation nodal methods. 

Another nodal method which does not share common features with the methods 

mentioned above has been developed by A. F. Rohach [28-31]. This nodal method 

has been used as the basis for developing the nodal method used in this dissertation. 

That nodal method uses a least squares minimization technique while expanding the 

neutron flux into Legendre polynomials. This minimization procedure provides the 

local flux distributions as well as the average nodal fluxes. The nodal methods have 

been reported to be quite successful in determining the average flux distributions 

and the multiplication factors with considerable efficiency when computer storage 

and computational speeds were considered. 

The general successes of these diffusion nodal methods have prompted exten­

sion of these methods into the neutron transport equation computations. Although 

there are some nodal methods based upon the spherical harmonics approach, the 

most of the current transport nodal methods use discrete ordinate approximation 

to the neutron transport equation as the starting point. The first of these trans­

port nodal methods was developed by Wagner [32]. In the method, the transport 

equation is reduced to one dimension by transverse integration over the node. Also 

the azimuthal angle is integrated out. The transverse leakage terms coming from 

that transverse integration is approximated by a quadratic fit over the nodal sur­

faces. That quadratic leakage term is assumed to be free from angular dependency 

as in the diffusion equation. In another group of the transport nodal methods, the 

transverse leakage terms are approximated by expressions which are angular depen­
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dent. Methods which can be included in this class are reported by Lawrence and 

Doming [33], Walters and O'Dell [34] and R. E. Pevey [35]. In addition to these 

nodal methods, which use the discrete-ordinates approach, there are also some nodal 

methods using the spherical harmonics approximation. A variational nodal method 

using the spherical harmonics approximations has been developed by Dilber and 

Lewis [36]. Another spherical harmonics nodal method based upon least squares 

minimization and Legendre polynomials has been developed for one-dimensional 

transport equation by M. Feiz [37] and Feiz and Rohach [38]. 
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3 NEUTRON TRANSPORT THEORY 

This chapter introduces the neutron transport equation and the relevant con­

cepts. The introduction starts with the major concepts used in transport theory 

and then the neutron transport equation itself is introduced in the conventional 

integro-differential form. The transport equation can be rearranged into more than 

one form such as the integro-differential form, the integral transport form or the 

even, odd-parity transport equation form. In this dissertation project, the even-

parity form of the neutron transport equation is more useful than the other forms 

of the transport equation. The spherical harmonics approximation to the neutron 

transport equation is based on the second order form of the even-parity neutron 

transport equation. Therefore, the even-parity form of the neutron transport equa­

tion is derived for further reference in this dissertation. The derivation of the 

transport equation and the definition of the concepts can be found in any major 

nuclear engineering textbook [39,40,41]. The following section uses the derivations 

and the concepts as given by Bell and Glasstone [40]. 

3.1 The Concepts and the Derivation of the Transport Equation 

The ultimate goal in solving the neutron transport equation is to determine the 

distribution of the neutron population in reactor core. One important property of 
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the neutrons is that they are not stationary particles. They move around in difFerent 

directions with various speeds as determined by their energies. In general, the 

number of neutrons at a given location moving in a specific direction is different from 

the number of neutrons heading in another direction. That directional dependency 

of the neutron population is affected by factors such as their location in the reactor 

core and the neutronic parameters of the core material. One other concept, which is 

also a function of the direction, is the scattering behavior of the core materials. The 

scattering of the neutrons from some nuclei may be oriented toward some preferable 

direction. In other words, we can say that the neutron population and the neutron 

scattering in a reactor core are functions of the direction. That direction of motion 

is usually expressed through a direction unit vector 0. The general convention is 

to express that unit vector the spherical coordinates which are shown in the Figure 

3.1. If the azimuthal angle f and the polar angle 9 are defined as in the Figure 3.1, 

then the unit vector 0 is expressed by the equation 3.1 as below. 

n  = s indcos i f i  -f- a inOs i rup j  4- cosOk  (3.1) 

Another concept which comes with the direction vector Û is the solid angle dil. 

The definition of the solid angle is given by the equation 3.2. 

dCl = sinQdQdip (3.2) 

The first physical concept to be introduced is the neutron angular density. 

The neutron angular density is basically the neutron population density at given 

locations and direction. That neutron angular density, the determination of which 

is the ultimate goal of solving the neutron transport equation, is represented by 
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dn  

X 

Figure 3.1: The spherical coordinates 
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N{f , i } , ,E , t ) .  The formal definition of that concept can be given as the prob­

able number of neutrons at the position f with direction Û and energy E at 

time É, per unit volume per unit solid angle per unit energy. The expression 

N{f,Çl,E,t)dVdÇldE is the number of neutrons in the volume dV about r, hav­

ing  d i r ec t ions  wi th in  dCl  abou t  O  and  ene rg ie s  i n  dE abou t  E a t  t ime  i .  

If the angular dependency of the angular neutron density is integrated out, we 

get another quantity which is known as the neutron density. This quantity is given 

by n(f,E,t). In physical terms, this operation is basically the same as lumping 

together all the neutrons moving in different directions, i.e., 

n{ f ,E , t )=  f  N{ f ,n ,E , t )dn  (3.3) 
JA'K 

where 47r implies that the integration is over all directions. 

One other quantity which also plays a major role in this discussion is the 

interaction cross section, a-^. It is the probability that a neutron will have an 

a type interaction with the nucleus of a specific isotope, and it is known as the 

microscopic cross section. In practical applications, macroscopic interaction cross 

sections are used. The macroscopic cross section is the probability that a neutron 

will undergo a particular reaction in a medium in unit distance. The macroscopic 

cross section Sa is obtained by summing the microscopic cross sections for the all 

nuclei in a cubic centimeter. The macroscopic cross sections are usually expressed 

as functions of space and energy as it will be seen in equation 3.4. The unit of the 

macroscopic cross section is cm~^. The interaction types which play major roles 

in the determination of the neutron populations are the fission, absorption and 

scattering interactions. The total cross section usually stands for the summation of 

all possible interaction types. 
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Once the interaction cross sections and the angular neutron density are defined, 

the angular interaction rates can be defined easily. The angular interaction rates, 

which determine the angular neutron density in the medium, can be defined as 

the product of the macroscopic cross section, the neutron speed, and the angular 

neutron population for the given volume dV around f, in the dO about in the 

energy interval dE around E. This is defined mathematically by the following 

expression. 

Fa(f, n ,  E ,  t )  = Sa(f, E)v{E)N{r ,  Û ,  E ,  t )dVdÇldE  (3.4) 

The product of the neutron speed and the angular neutron density in the above 

expression is known as the angular neutron flux density ^(f, jE, <). The physical 

meaning of ^(f, fî, E, t)dAdVtdE is the number of neutrons passing through the area 

dA in dO. about Q within dE at E at time t. If the angular part of that angular 

neutron flux density is integrated out as it done with the angular neutron density, 

the result is known as the total flux. Both the angular and the total neutron fluxes 

are scalar quantities. Although they are densities as explained above, they are 

usually referred as the angular neutron flux and the neutron flux. 

The neutron transport equation, which uses the basic concepts given above, is 

given as 

1^ _ 
- — + n.v$(f, n, E ,  T )  + s<(f, E)$(f, n, E ,  T )  = s{f, n, E , T )  + 

J  d É  J  É  E , Û ^  à ,  É, 0 (3.5) 

As is seen from equation 3.5, the dependent variable, angular neutron flux 

E,t), is a function of space, direction, energy and time. The first term 
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on the left side of the transport equation exists only for the dynamic cases and it 

defines the change of the angular neutron density at the given location. This term 

is dropped for static problems as is the case in this dissertation. The second term 

on the left hand side is known as the streaming term. That term usually represents 

the moving neutrons at given directions. The third term is the total interaction 

density for the given location, direction, energy and time. The first term on the 

right side of the transport equation is the source term. This source term can be 

either an external source or a fission source. For the external source cases, the 

emitted neutrons are independent of the neutron density. In contrast with that, 

the fission source, which results from the fission interaction between the neutrons 

and the fissile nuclei, is determined by the neutron density. The second term on 

the right side is the contribution from the neutron scattering events. The neutrons 

with different directions and energies prior to the scattering may be born into the 

energy level E and the direction after the collision. The scattering cross section 

is thus actually a transfer cross section. 

The usual boundary condition used with the neutron transport equation is the 

vacuum condition which assumes that there are no incoming neutrons from exterior 

regions to the problem domain. If the transport equation is solved in a volume 

V with the surface F, then the vacuum boundary condition is expressed in the 

following form. 

^ ( f , n , J ? , i )  =  0  f o rn .Û<0 a t rST  (3.6) 
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3.2 The Even-Parity Form of the Neutron Transport Equation 

The nodal method developed in this project uses the second order form of 

the differential equations derived through the spherical harmonics approximation 

to the transport equation. These second order differential equations correspond 

to the second order even-parity form of the neutron transport equation [7,8,42]. 

The formal procedure for deriving the even-parity form of the neutron transport 

equation is illustrated using the monoenergetic and the steady state case as given 

by equation 3.7. 

n.v^(f,n) -t- Z((r)$(f, n )  = J dù^f ,à  -> Û)^{f ,à)  + 5(f,n) (3.7) 

^(f, si) = 0 for  n.Û <0 a< r G F (3.8) 

The neutron transport equation given by 3.7 is valid for all directions. Since 

the equation is valid for all Si's, then the same equation should also be valid for 

—n. The neutron transport equation for this reverse direction case is expressed by 

equation 3.9. 

-s1.v^(r,-Q) -t- -Û) = I  dÙ^f , -à  ̂  -fi)«r(f,-à)  + 5(r, -Sl) (3.9) 

At this point, some new quantities are introduced into the even and odd-parity 

equations resulting from this derivation procedure. The first two of these quantities 

are the even and odd-parity angular fluxes. 

^"^(F,0) = - |^^(f, si) + $(f, —n) even pari ty  (3.10) 

'ï~(f, n) = - |^(f, si) — ^(f, —fi) odd pari ty  (3.11) 

Some important properties of these even and odd-parity fluxes are defined by 

the following four identities. 
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+  _ n i  

»- ( r ,n )  =  -$ - (F , -n )  

[  ^^{f ,v t )dn =  ̂ ^^  
JAK  

[ $~( f ,n ) r fn  =  o  
JhlTT 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

where $(f) is the total flux. 

The even and the odd parities are defined also for the source term and the 

scattering cross section in the same manner as was done with the angular flux. 

5+( r ,n )  =  1  [5( f , f i )  +  5 ( f , -n )  

s-{ f ,û)  = Us{v,n)-s{r , -û)  

s+( f ,n  n )  =  -  | s ( f ,n  ->  f i )  +  s ( f , - f i  

s - ( f ,n ->n)  =  - s ( f , f i  -> î ) )  - s ( f , -n  

- Û )  

—f2)  

(3.16) 

(3.17) 

(3.18) 

(3.19) 

If the transport equations for the normal and the reverse directions given by 3.7 

and 3.9 are added and subtracted, two new equations are obtained. The substitution 

of the newly defined quantities into these equations results in the two new equations 

given below. The first of these equations is known as the even-parity transport 

equation while the second one is called the odd-parity equation. 
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n.V^-(f,n)+S/(rO^+(f,Q) = / ^ n)$+(r,+ g+(r,n) (3.20) 

n.v$+(f ,n)  + 2<(f)$-(r ,n)  = J  dù^- i f ,û  û)^-{ f ,û)  + s-{ f ,û)  (3.21) 

As can be seen from the equations 3.20 and 3.21, both the even and the odd-

parity transport equations contain both the even and the odd-parity angular fluxes. 

At this point, we will eliminate the odd-parity angular flux from the even-parity 

neutron transport equation. This can be achieved by expressing 0) in terms 

of the even-parity quantities using equation 3.21. Then that odd angular flux is 

substituted into equation 3.20. The substitution results in the second order form 

of the even-parity neutron transport equation. Before going through the process, a 

new operator is defined. 

AT = _ y É n) (3.22) 

If this operator is used in the odd-parity transport equation, equation 3.21 can be 

rearranged as 

n.7$+(f,n) + %^-(f,n) = s~{f,Q) (3.23) 

If equation 3.23 is solved for the odd angular flux, the following expression is ob­

tained. 

^-{f,Q) = K-'^ [^-(f,n)-n.v$+(f,n)] (3.24) 

If this expression for the odd-parity flux is substituted into equation 3.20, the second 

order form of the even parity neutron transport equation is obtained. 
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J dÙE+{f ,Û n)^  + {f ,à)+ [5+(r,n)-n.Vi ir~^5"(r ,n)  (3.25) 

In the even-odd parity transport equation form, the vacuum boundary conditions 

are also expressed in terms of the even and the odd-parity fluxes as below. 

»+( r ,n )  +  ̂ ~ ( f ,n ) ]  =  0  for  n .n  <0 at  f  e  T (3.26) 
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4 REVIEW OF THE SPHERICAL HARMONICS 

The solution techniques of the neutron transport equation usually involves 

some kind of approximations. The spherical harmonics approximation is used in 

this dissertation. In this method, the angular neutron flux is approximated by the 

spherical harmonics. This chapter gives a short review of the spherical harmonics. 

A more detailed discussion of the spherical harmonics can be found in the book by 

Morse and Feshbach [43]. 

The origin of the spherical harmonic expansion lies with the solution of the 

Laplace equation in spherical coordinates 

The Laplace equation is a separable equation and the dependent variable /(f", 

can be expressed as the product of the three separate quantities which are functions 

of the space vector f, the ajdal angle 6 and the azimuthal angle in the spherical 

coordinates. 

If the expression 4.2 is substituted into equation 4.1 and the separation proce­

dure is performed, the Laplace equation in the spherical coordinates gives rise to 

the three following ordinary differential equations 

J.2 Qr 
(4.1) 

S(T,e ,v)  = R(T)P(e)G{v)  (4.2) 



www.manaraa.com

21 

JL  
sin llë - a) 
Y-S 4- m^G(ip)  = 0 (4.4) 
dip^ 

3 i ( ' ' f ) - = ^ « ' l - "  1 " )  

The nature of the problem requires both n and m in equations 4.3-4.5 to be 

integers. For the cases where both n and m are integers and n > m, a solution to 

equation 4.3 is known as the associated Legendre function and it is given as 

Pnm{oos9)  = (l - cos^g)^^^^^^^^^^Pn(cosg) (4.6) 

where: 

= • (^-7) 

The second and the third differential equations 4.4 and 4.5 are very common 

in type and their solutions are given by equations 4.8 and 4.9. 

(?(95) = sinm^+• C2 cosmi^ (4.8) 

R{T )  =  dir"^  + (4.9) 

where ^2 in equation 4.9 is zero due to the boundary conditions. 

Special solutions to the Laplace equation are expressed as the product of the 

associated Legendre functions and the solutions of the differential differential equa­

tions 4.4 and 4.5. These are called spherical harmonics. Superposition of these 

solutions gives 
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f{r ,$ , (p)  = ^ ^ (Anmcosmv? + jBnmsinmv5)Pnm(cos^)(-)"' (4.10) 
n=0m=0 ^ 

While any solution of differential equation 4.1 inside a sphere with a radius a 

can be approximated by equation 4.10, the boundary values defined over the surface 

of the sphere can be approximated by 

oo n  
g{6,( f )  = Yi  { A n m  cos m ( p  +  B n m  sin rrnp)  Pnm{co30)  (4.11) 

n=0 m=0 

The series given by equation 4.11 is complete in the sense that any function 

can be represented through that expression in an exact manner as the number of 

the terms goes to infinity. One of the important properties of spherical harmonics 

is the orthogonality property. This property introduces a considerable amount of 

simplification in the procedures implemented for determining the moments of the 

series given by equation 4.11. 
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5 THE SPHERICAL HARMONICS APPROXIMATION TO THE 

NEUTRON TRANSPORT EQUATION 

Spherical harmonics, which have been reviewed previously, play an important 

role in nuclear reactor calculations. One of the methods used for solving the neutron 

transport equation is based upon these spherical harmonics. In this approach, the 

angular neutron flux is approximated by a spherical harmonics expansion. The 

method then gives rise to a set of differential equations which use the moments of 

the spherical harmonics expansion as the dependent variables. This chapter gives an 

insight into the conventional application of the spherical harmonics approximation 

in reactor calculations. 

The conventional application of the spherical harmonics method usually results 

in a set of first order partial differential equations. The implementation of the spher­

ical harmonics approximation in this dissertation deviates from that conventional 

approach and uses a second order form. This method is becoming popular as shown 

in recent publications [13-17,18,44]. 

5.1 The Conventional Application of the Spherical Harmonics 

As has been reiterated, the spherical harmonics are used for approximating 

the angular dependency of the neutron flux. In this section, some details are given 
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about the application of this method. In order to keep the equations in a simple 

form, the approach used in the third section is repeated and the equations are shown 

for the monoenergetic and the steady state cases. The extension of the method to 

the multigroup form of the neutron transport equation is very straightforward and 

it will be shown for the recurrence relations which will be developed in this section. 

The first step in the spherical harmonics method is to expand the angular 

neutron flux in the unnormalized spherical harmonics. This expansion represents 

the angular flux in an exact manner. 

00 I 

+ 1) ^ cos m(p-h-f i^{ f )  s in  mip]Pi^{cosd)  (5.1) 
/=0 771=0 

The moments and in the equation 5.1 are functions of space. In the cases 

where the neutron transport equation is used for time and energy dependent prob­

lems, these moments are functions of time aiid energy as well. In usual applications, 

a few terms in the expansion are adequate to approximate the angular neutron flux. 

Therefore, the upper limit of the first summation is picked as a finite number. One 

important point in determining the upper limit of that first summation is to pick 

it as an odd number[45]. Another point, which is also worthy of some attention, is 

the meaning of some moments in expansion 5.1. The moment 0QQ(f) is known as 

the scalar flux. The moments ^ll(^ and also correspond to some 

physical quantities and they represent the net neutron currents in the z, y and z  

directions. The match between these lower order moments and the scalar flux and 

the net currents is an important property of the spherical harmonics approximation. 

Once these moments are determined through a computational procedure, no addi­

tional calculations are required for obtaining the scalar flux and the net neutron 
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currents. As a result of the finite approximation, the angular neutron flux will be 

represented by 

.V f ^ 
=  ^ (2Z+ 1)  ^  \^ i^ [ f )cosm^ +  - ( i^{ f ) smm^\P i^{cos6)  (5 .2 )  

/=0 m=0 

As can be seen from equation 5.2, if the moments can be determined then 

the approximate angular neutron flux can be easily computed for any location and 

direction. The usual practice in the determination of the spherical harmonic mo­

ments is to implement a Galerkin weighted-residual scheme. In this procedure, the 

approximate angular neutron flux expression given by 5.2 is substituted into the 

neutron transport equation and then the neutron transport equation is weighted by 

the spherical  harmonic polynomials  over  the whole ranges of  the spherical  angles  9 

and ip. This procedure which is shown by the following two equations 

J J4 O.V^( r ,  0 )  4-  S^ ( r )$ ( r ,  0 ) j  s inOdOdy 

~ If/^(cos cosm,y: j d Ù l l { f , C î +  S { ( i )  s i n 6 d 9 d i p  =  0  (5.3) 

J Pl^{cos 6)  s inrrnp Q.V^{f ,Q) + Hf{f)^g{ f ,Û)  sinOdddip 

~ J ^/^(cos  ̂ ) sinmt^ j^y rfÔS(r, n —> fi)$(f, n) 4-5(0) sin6d6dif=0 (5.4) 

provide the correct number of equations for determining the spherical harmonic mo­

ments. One important point, which distinguishes this procedure from the common 

weighted-residual applications, is that the resulting expressions are first order partial 

differential equations while the common applications result in algebraic equations. 
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In the spherical harmonics method, the source on the right hand side of the 

neutron transport equation is also expanded into the spherical harmonics in a similar 

manner to the neutron flux. 

N I 
5(r-,0,95) = J] (2/ +1) ^ cos -t-sin mv5] P/^(cos^) (5.5) 

Z=0 m=0 

One other quantity, which also requires a treatment in the spherical harmonics 

method, is the scattering cross section. Since the scattering cross section represents 

a transfer from one direction to the other, it is a function of the two different direc­

tions and as a result of that, it is approximated by an expansion which implements 

the addition theorem. The expansion of the scattering cross section is given 

1 oo 
S ( r ,n^Û)  =  — J2{2 l i -  (5 .6 )  

/=0 

where : 

Plià.Û) = [2 - ̂ (0 - m)] ^^!j—^^Pi^{cosd)Pi^{cosé)co3{m{ip - v?)) (5.7) 
m=0 ^ 

The implementation of the Galerkin weighted-residual scheme leads to recur­

rence relations which allow the generation of the first order differential equations 

for the spherical harmonic moments without going through all the derivation pro­

cedure for each weighing function separately. The development of these recurrence 

relations are made possible by two recurrence relations. 

(2/ -r l)cos6Pi^{cose) = (/ - m 4- l)Pi^i^j^{cosê) f (/ + m)P/_i^^(cos5) (5.8) 
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{21 ~  l)s inOPi^{cosd)  = ( / -^  m)( /4-m — l )P^_2^^_j(co5^)-

{I  -m + 1){1 - m -i- 2)Pij^ i^^_ i{cosd)  (5.9) 

If the procedure described here in general terms is carried out for Cartesian 

coordinates, the following two recurrence relations are obtained. 

2(/ + m++ 1' m 

+ [1 + 6(1 - m)] 

dz dz  

dx dx dy dy 

+ (/ + JTl + 2)(/ "i" TTl + 1) 1,771+1 

Ôy 

— ( /  — TTl  — 1 ) ( /  — 771  )  

= 2(2/ 4-  l)s j#/^^(a!,y,2) + 2(2/ + l)5/^(a;,y, z) 

l ,m+l  1,771+1 
5a; 5y 

+ 2(2/ + l)S^$^^^(x, y, z) 

(5.10) 

2(/ + m + l)f22±lEL + 2(/ - 771 

+ [1 + 6(1 — 77l)] 

dz 
^^ /  —l ,m—1 ^ ' ) ' /  —l ,T7 l—1 _  ^^ /  +  l ,77 l  —1 _ '̂̂ / + l,77l —1 

dy dx dy dx 

+ (/ + 771 + 2)(/ + 771 + 1) ^^/ + l,7n+l ^1^/+1,771 + 1 
ôy 5a! 

— (/ — 771 — 1 )(/ — 77%) 

= 2(2/ + 1)2^7/yy^(z,y,z) + 2(2/ + l)5;^^(x, y,z) 

^ '^ /—l ,m+l  _  1,771+1 
dx dy 

+ 2(2/ + l)Z(7f,ni(z,y,z) 

(5.11) 

These two relations allow one to generate as many equations as one desires. 

Since the derivation of the recurrence relations is not of direct interest to this 
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project, it is not demonstrated. One important point which is worthy of mention is 

that if the moment operated on by is an even moment where I is even, then the 

recurrence relations given by the equations 5.10 and 5.11 generate the spherical har­

monic differential equations for the even-parity transport equation. If that moment 

is an odd moment, then the recurrence formulas generate the spherical harmonic 

differential equations for the odd-parity transport equations given by 3.21. 

The recurrence relations as given by equations 5.10 and 5.11 are only for the 

monoenergetic case. The conversion of these relations to the multigroup form is very 

straightforward. In the multigroup form, the right sides of equations 5.10 and 5.11 

are modified to include scattering from the other energy groups. The multigroup 

form of the spherical harmonic recurrence relations are given as 

2(2/ -t- z)  — 

G , , 
+ Z 4-2(2/ + 

h=l 
(5.12) 

d-yf  d j f  
2{l  + m + + 2(/ - m) + [1 + f(l - m)] 
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/ —1,771 —1 ^ —1,771 — 1 
dy dx 

4-(Z + 771 4" 2)(/ -f- 771 4" 1) 

[ l  — m  — 1 ) ( /  — 77 i )  

dy 

K+l ,m+l  

dj^  
/-f-1,771 —1 

dx 

Z + l,771 + 1 
dy 

9^-1. 771 + 1 

dx 

m+1 
dx dy 

J  

+ 

2(2/ + l)S1^^7^^^(a!, y, z)  — 

G 
2(2 /+  1)  E  s i ,A_j7 ,y^ , ï . ^ ) -2 (2 ;  +  l )5 f_Jx , î , , z )  

h=l 
(5.13) 

where g gives the energy group number. The $^^(x,y) and 7^(aj,y) in the above 

equations define the group moments. s{ , is the Ith. coefficient of the Legendre 

polynomial  expansion for  scat ter ing probabi l i ty  f rom group h to  g.  

Equations 5.12 and 5.13 generate the spherical harmonic differential equations 

for the three-dimensional case. The reduction of the resulting equations to the two-

dimensional case is done in the following manner. The first step in the modification 

of these recurrence relations which provide (iV + 1)^ partial differential equations is 

to eliminate all the terms which involves derivatives with respect to the z direction. 

Once this is done, then the symmetry condition is used for eliminating the other 

moments which are not to be used in the X-Y geometry. The rule of thumb which 

results from that condition, is that all moments with odd m when I = even and 

all moments with even m when I = odd are eliminated from the three-dimensional 

equations. In the following part, the conventional fg approximation differential 

equations are shown for demonstrating the idea described above. As it is done here, 

the P3 approximation will be used for demonstrating the ideas described. 
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^ ̂  + Ej^OO = + SOO (5.14) 

^ ̂  + 6^ + 6^ + = 3sl4ii 4- 35u (5.15) 

^ ̂  = 321711 + 35n (5.16) 

^ ̂  + ^^«*20 = 5S?^20 + 5% (5.17) 

a|ii _ Ô|31 + ^ ^ + 3OÉ|33 + 30^ + 10S,$22 = 
ax ox ay ay ox ay 

10S2$22 + 10^22 (5.18) 

102^722 + 10^22 (5.19) 

^ ̂  ̂  + 72(#31 = 7Sf $31 + 7531 (5.20) 

^  + ̂ - ^  + ̂ ^ '^31=ra f731+T% (5 .21)  

^ ̂  + 142i$33 = 143^*33 + 14533 (5.22) 

^ ̂  + 142(733 = 142^733 + 14%3 (5.23) 

The differential equations 5.14, 5.17, 5.18 and 5.19 in the above diff'erential 

equation set represent the even-parity transport equation while the rest of the six 

differential equations represent the odd-parity transport equation. 
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5.2 The Second Order Form of the Spherical Harmonics Method 

In this section, the second order form of the spherical harmonics method is 

introduced. The approach used is to manipulate the spherical harmonic equations 

into a form which corresponds to the second order form of the even-parity neu­

tron transport equations as shown by equation 3.25. The second order form of the 

spherical harmonic equations offers some important advantages. In the second order 

form, only the even moments are determined through the computational procedure. 

If the odd moments are needed, they can be computed by using the approach de­

scribed by equation 3.24. This introduces a significant amount of reduction in the 

number of the spherical harmonic moments to be determined. Another important 

advantage is that the second order form of the spherical harmonic equations is a 

familiar differential equation. In this second order form, only four types of opera­

tors are seen. One of these operators is the Laplace operator. When the coupled 

differential equations are decoupled and solved iteratively in the manner which will 

be described below, the left side of the differential equations become analogous to 

the neutron diffusion equation. The solution techniques for that type of equation 

are readily available. One other advantage is that the second order form allows the 

generation of any order equations in an automatic manner. 

The even spherical harmonic moments can be used to form the spherical har­

monic approximation to the even-parity angular flux. The spherical harmonic ex­

pansions approximating the even and the odd-parity angular neutron fluxes are 

given by equations 5.24 and 5.25. If the odd-parity angular flux needs to be known, 

the odd moments can be determined by using the recurrence formulas 5.12 and 

5.13. The procedure of solving the second order form of the spherical harmonic 
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equations and then determining the odd moments by using equations 5.12 and 5.13 

corresponds to solving equation 3.25 for the even-parity angular flux and then de­

termining the odd-parity angular flux by using equation 3.24. 

1=0 771=0 

oo 

l=even 
(S.24) 

OO / 

/ = 1 771=0 
l=odd 

(5.25) 

If the expansions are truncated at some odd N ,  then the approximate expressions 

are given by the following two forms. 

^  ( r , f i )=  (2 / -M)  W cos  
Z=0 771=0 

l=even 
(5.26) 

N  I  
^  ( r ,n )=  Y.  (2^  +  1)  ^  [<^( f ) ;^  cos  - f  7( f ) s in772V?]  P /^ (cos0)  

/ = 1 771 = 0 
l=odd 

(5.27) 
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The main idea in developing the second order form spherical harmonic proce­

dure is to strip off the odd moments from the spherical harmonic equations. This 

would reduce the amount of required storage for a computer code which will im­

plement the numerical method to be used for solving the equations. One way to 

develop such a procedure is to go through the same Galerkin weighted-residual 

method as has been done for the conventional spherical harmonics method. The 

conventional form of the neutron transport equation in equations 5.3 and 5.4 would 

have been replaced by the second order even-parity form of the transport equa­

tion given by 3.25. Such a procedure has been reported by Kobayashi et al. [18] 

and Kobayashi [44] for space dependent neutronic parameters case. In our appli­

cation, instead of going through that weighted-residual scheme, which would prove 

to be quite time consuming in its development stage, a short cut was used. In this 

project, the conventional forms of the spherical harmonic recurrence relations were 

used for deriving the second order form of the spherical harmonic equations for the 

isotropic source and the homogenous regions. If the first order differential equa­

tions are generated for the case (Z,m) where I is even, the recurrence formulas 5.12 

and 5.13 would contain the moments $'s and 7's for (Z 4- l,m 4-1), (/ + l,m — 1), 

(Z — l,m +• 1) and (/ — l,m — 1). These would make up the odd moments in the 

equations. In the development of the second order form, the first order equations 

were generated for these eight odd moments and then they were substituted into 

the equation generated for (/,m) where I is even. Although this procedure is a 

very tedious operation, it has been achieved easily by utilizing the symbolic pro­

cessor MACSYMA [46] and the recurrence relations developed for the conventional 

spherical harmonics approach gave rise to the two recurrence relations for the sec­
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ond order spherical harmonic equations. These recurrence relations are valid for all 

cases for / > 0. The differential equation for / = 0 can not be generated through the 

recurrence formulas developed here. As a result, the equations which will be used 

in the determination of the even order spherical harmonic moments can be given 

by the following expressions for the monoenergetic case. 

•^0*00(®'î/) + ^ ^20 - 6 
g z i  

dx^ dy^ 
*22 - ̂ 2^^722 = 3Si5oo(a:,y) 

a2 

(5.28) 

dx^ dip" 
[C] [$]2 -

dxdy 
D [tII = 0 

(5.29) 

^27/Tn(®'2/) - ̂  P [7)2 
^2 ^2 

9a; 2 Qy2 

a2 
[^1 [^^3 - [^1 [*]3 = 0 

(5.30) 

The operators Lq, L-^ and L2 which were used in the equations 5.28, 5.29 and 5.30, 

are given by the following expressions. 

ZfQ — —V + 3SQS^ 

Li = + .42S/^i)V2 + 

1-2 = + .42S!;̂ i)V2 + Â '̂Si_i'Zi'Eî i 

(5.31) 

(5.32) 

(5.33) 
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where : 

- Zj (5.34) 

The [5], [C], [D], [É], [c], [d], [$]^, M2 , I7I3 are column 

vectors. Their products [ B ]  [$]]_, [C] [$]2, [D] [É] Mi, [c\ [7)2 and [ d \  [7)3 

used in 5.28, 5.29 and 5.30 are defined as 

[5] [$]i = Bi£,ij^^^i_2^^{x,y) + B2S/-l*/+2,m(®'2/) (5.35) 

[C][$]2 = C'lS/+i$/_2,;n-2(®'2/) + ̂ 2^/+l*/-2,m+2(®'2/) + 

(^3^/-l + Q^/^-l)*Z,m-2(®'2/) + 

(C5S/_i + C^6^/+l)*/,m+2(®'2/) + 

^7S/-l*/+2,m-2(®'2/) + C8^Z-l^Z+2,m+2(^'^) (536) 

[D] [$]3 = ^iS/+i$/_2,r^_2(®,y)  + ^2^Z+l^Z-2,m+2(®'v)  + 

+ ^4^/4-1)^/,m-2(®'2/) + 

+ ^6Sz+l)^Z,m+2(®'y) + 

-D7S/_i$/+2,m-2(®'2/) + •^8^/-l*/+2,m+2(®'?/) (5.37) 

Ml = '®lS/4.i7/_2,m(®'2/) + •®2S/-l7i+2,m(®'2/) (538) 
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à\[l]2 = <^lS/+i7/-2,m-2(®'2/)  + <^2S/+l7/-2,m+2(®'2/)  + 

+ <^4^/+l)7Z,m-2(®'y) + 

(C'5S/_i + <^6^/+l)TZ,7n+2(®'2/) + 

^7S/-l7/+2,m-2(®'y) + ̂ 8^/-l7/+2,m+2(®'^) (5-39) 

•D] [7)2 = + ̂ 2S/+l7Z-2,Tn+2(®'2/) + 

(^3^i-l + ̂ 4^/+l)7i,m-2(®'î/) + 

(^5S/ _ i  +  +  

I>7S/_i7Z+2,m-2(®'2/) + •^8S/-l7/+2,m+2(®'2/) (5-40) 

The constants ^j's, Bj's, C^'s, .4^'s, C^-'s in the recurrence relations above 

can be generated as functions of spherical harmonic indices I and m by using the 

expressions given in the Appendix. 

In the two-dimensional Cartesian geometry, the number of second order simul­

taneous differential equations is defined by the following expression. 

N 
Number of  the Equat ions = ^ I  (5.41) 

l=\ 
I—odd 

As it can be seen from the above formula, the number of the differential equations 

which will be solved simultaneously increase very rapidly. Although the lower order 

approximations do not pose any problem, the higher order approximations may 

result in very large matrices if simultaneous solution techniques are adapted. 
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The solution technique adapted in this research is an iterative scheme which 

resembles the Gauss-Seidel method if the differential equations are assumed to be 

linear algebraic equations. In that iterative scheme, the first step is to assume that 

all the moments, which are not operated on by the operators Lq^ Li or £2^ s-^e 

known quantities. As a result, all of the moments assumed to be known can-be 

transferred to the right side of the equations. Once this is done, a set of initial 

guesses was formed for all the moments for which we are seeking a solution. The 

equations were solved by starting with the ones which have the lower order moments 

as the dependent variables. The values of the moments obtained from the last 

iteration were substituted into the equations for the following iterations. The final 

forms of the spherical harmonic differential equations which allow the described 

iterative scheme to be implemented are 

•^0^00(®'2/) = 3Si5oo(œ,y) - V $20 + ^ 

^ -^1 [7)2 + 

d'  

dx^ dy^ 

' 

dx^ dy^ 

dx^ dy^ 

[CI [0I2 + 

*22 + 12â;^722 

ô2 

dxdy 
D [tII 

ô2 

(5.42) 

(5.43) 

(5.44) 

The following four equations constitute the second order form of P3 approxi­

mation to the monoenergetic neutron transport equation. 
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-V $00 + 3SOSI$oo(®'2/) = 3Si5oo(aî,y) - V $20 

+6 
^2 g2 

dx^ dip '  

^2 
*22 + 129^T22 (5.45) 

(SeSi + I4S3) 72*20 + 210SiS2^3^20(®'y) = -14Z3v2$oo 

— (36S]^ + 842]g) 
^2 g2 

ôa;2 d-ip" 

a2 
$22 - (72Si + I68S3) 0^122 (5.46) 

— (482^ + 42S3) V $22 210S]^S2S3$22(®'2/) — 

7S3 
d'  d '  

dx^ dip" 
$00 ~ (3^1 + 7S3) ÉL 

dx^ dy^ ^20 (5.47) 

(48Si + 42S3) V 722 + 210SiS2^3722(®iÎ/) = 

- («Si + I4S3) ^$20 (5.48) 

If the four equations are compared to the ten equations given for the P3 ap­

proximation in the conventional spherical harmonics section, the advantage of using 

the second order form over the conventional method becomes apparent. 
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6 THE BOUNDARY CONDITIONS FOR THE SPHERICAL 

HARMONICS METHOD 

The spherical harmonic boundary conditions used in this project differs from 

the main stream application of the spherical harmonic boundary conditions. The 

idea used in this work is to manipulate the boundary conditions into such a form 

that they can be used both for external and internal boundaries without any modifi­

cation. In contrast with that, the usual applications of the boundary conditions for 

the second order form of the spherical harmonic method in the available literature 

do not allow such an approach. The technique which will be summarized here is one 

of the most common implementations of the spherical harmonics boundary condi­

tions [13-16,18]. As will be seen from this summary, the external and the internal 

boundary conditions will be implemented in different ways. 

The simulation of the reflective external boundary conditions is carried out by 

setting the derivatives of the even moments at normal direction to the boundaries 

equal to zero. The odd moments at the reflective boundaries are set equal to 

zero. This usually allows the reflective boundary conditions to be represented in 

an exact manner. The simulation of the vacuum conditions can not be done in an 

exact manner and it poses difficulties. What is commonly done for representing the 

vacuum boundary conditions is to set all the moments except $qo equal to zero 
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at the vacuum boundaries. For 0QQ, the diffusion equation boundary condition 

incoming partial current is set equal to zero. This method is reported to work fine 

if the values of the moments at the boundaries are not needed. If the values of the 

moments at the vacuum boundaries need to be known, then the vacuum boundary 

is surrounded by a pure absorber material and all moments are set equal to zero 

at the outer boundary. The drawback of this application is that this treatment 

introduces an extra region for which all the calculations must be done in addition 

to the real problem domain calculations. The treatment of the internal boundary 

conditions or the interface conditions are done by making all the moments, both 

even and odd, continuous across these material interfaces. As can be seen from this 

summary, the treatment involves the utilization of the odd moments. This requires 

that these odd moments are to be computed at some points in the computational 

procedure. This introduces some extra computations which will increase overall 

execution time for any given problem. 

The boundary condition used in this work is based upon the variational prin­

ciple derived by Davis [6]. He derives the following boundary condition from that 

variational principle for the vacuum boundary condition. 

If the notation is converted to the one used in this dissertation, that boundary 

condition can be expressed by 

n.ÛYi^{''6 + x)(fn = 0 (6.1) 

Jn.n<o 
A - n.n n) 4- $ (f, fl) Pi^{cos6)cos{m(p)sin9d9dip = 0 

^  ̂ <0 n .n n) + 'P Pi^{co36)sin{m(p)3inOddd(p = 0 (6.3) 
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In the rest of this dissertation, the boundary conditions based upon the ex­

pression given by the equation 6.2 will be called the first type boundary conditions, 

while the ones based on the equation 6.3 will be called the second type conditions. 

Although the vacuum condition is the most common boundary condition for the 

neutron transport equation, we can generalize that boundary condition by assuming 

that the condition is actually equal to a function / at the boundary as given below. 

<6{f ,Û) = f{ f ,Û) farn.Û<0 ai f G T (6.4) 

Since the function / in equation 6.4 can take any value, it allows us to use that 

boundary condition at the material interfaces as well as the external boundaries. 

As a result, the generalized forms of the boundary conditions to be used are given 

as 

/ I -  n . n  0 )  - t -  ^ " ( f ,  0 )  P i ^ { c o s O ) c o s { m i p ) 3 i n 9 d 9 d i p  =  f i ^  ( 6 . 5 )  
**  7Z» i  6  ̂  U 

A ^ n.Û si) + ^"(f, î1) Pi^{co39)3in{m(p)3indd9d<p = (6.6) 

The first step in the manipulation of the boundary conditions is to replace the 

even and the odd-parity angular fluxes in equations 6.5 and 6.6 by the spherical 

harmonic expansions 5.26 and 5.27. This gives rise to boundary condition ex­

pressions involving both the even and the odd moments of the spherical harmonic 

expansion. As was described in Chapter 5, the general approach in the spherical 

harmonics method is to eliminate all the odd moments from the calculations. This 

same approach is adapted for the manipulation of the boundary conditions. The 

odd moments in the boundary conditions 6.5 and 6.6 can be eliminated by using 

the recurrence relations 5.10 and 5.11 for the isotropic source case. If the boundary 
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conditions given by 6.5 and 6.6 are evaluated for the boundary of a square region 

perpendicular to the x direction, the following expressions are obtained. 

Jn.U n<o 
N - 1  

n )  4 -  ^  ( f ,  f i )  P i ^ { c o s 6 ) c o s { m ( p ) s i n 9 d 9 d ( f i  =  

I h .  '  ' J "  \  4 -  V  V . . . :  
dy j—Q «=0 ^ jz=2 k=l 

j=even j=even 

(6.7) 

A - n.n n) + $ { f ^ Û ) ]  P i ^ { c o s 9 ) s i n { m i p ) 3 i n 6 d 6 d i p  =  .n<o 
N - l  j  V  —  1  J  /  Q y  . ,  \  N — 1  j  . ,  

^.{''hjkyjk + hjk^]* E z (6-8) 
j=2 &=! 

j=even 
j=0 6=0 

j=even 

If these expressions are modified for the two dimensional Cartesian coordinates, 

then the following two final forms are obtained. 

L n.Û 0) + $ (f,0)j Pi^{co3d)cos{Tn(p)sin6d6d(p = 
/ n .n<o 

N - l  j  /  \  N - l  j  d ' y - L  

j=evenk=even j=evenk=even 

L in.Ù<Q 
N - l  j  

E E 
j=2 k=2 

j=even k=even 

n )  +  ̂  ( r ,  f 2 ) j  Pi^{cosd)sin{rrnp)sin9d9d^ = 

^ ' ^ ^ j k \  
hjk^jk + h,jk~Q^ j + 

N - l  j  

E Z 
j=0 k=Q 

jz=even k—even 

•ik dy (6.10) 
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The boundary conditions for the surfaces perpendicular to the y direction can 

be derived in a similar manner. The coefficients 6% c^j^'s contain 

the odd order cross sections Sj's. 

As can be seen from the two boundary conditions 6.9 and 6.10 given above, 

they are combinations of the mixed type boundary conditions for each moment. One 

problem with these boundary conditions is that they have derivatives with respect 

to the directions tangent to the surface at which the boundary conditions are to 

be evaluated. Since the tangential terms coming from two sides of the material 

interfaces can not be set equal to each other due to the physical considerations, 

these terms are dropped from the boundary conditions. 

In.Û n.f2<0 
n.fl 0) + $ (f, fi) Pij^{co39)co3{rrnp)sindddd<p = 

N — 1  j  /  •  

j=0 «=0 
j=even k=even 

(6.11) 

I "  Û < 0 ^ ^  0 )  +  $  ( f , n ) ]  P i j ^ [ c o a d ) a i n [ r r n p ) 3 i n d d 9 d i p  =  

E { h , } k i i k + h , j k ^ )  
JV-l 
E 

J = 2  k=2 
j—even k=even 

(6.12) 

+ These boundary conditions 6.11 and 6.12 can be used with the spherical har­

monics method. They consist of only the even moments and their derivatives. In 

addition to that, the final forms can be used both for the external and the internal 

boundaries. In our implementation, one further step was taken before these bound­

ary conditions were implemented. As was shown in Chapter 5, the second order 
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governing equations were decoupled and an iterative scheme was implemented for 

solving the simultaneous equations. A similar approach is required for the boundary 

conditions in order to solve the simultaneous differential equations with an itera­

tive method. One way for achieving this is to follow the same procedure used in 

Chapter 5. The moments, which are assumed to be known, can be transferred to 

the right side of the boundary conditions. The drawback of this approach is that 

as the approximation order increases, the number of terms in the boundary condi­

tions rises rapidly. As a result, the evaluation of these boundary conditions during 

the computations requires a considerable amount of time. The alternative scheme 

implemented here is to drop all the moments that have indices different from the 

weighing harmonics in the boundary conditions. Once this is done, we obtain the 

final form which was implemented in this project. This approach is shown by the 

two following expressions. 

In the nodal method which is developed here, the nodes are rectangular as 

shown in Figure 6.1. As a result, the intervals of the angles over which the equations 

6.13 and 6.14 will be integrated are known. The integration over the axial angle 

fi.Û n) -t- $ Pi^{co3Ô)cos{Tn(p)sin9dddip 

a* 

.n 0) + ^ (f, 0) PiyjJ^cos9)3in(rrnp)3inôd9dif 

^1,/mT/m ^2,/m 
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is carried from tt to 0 for all sides of the nodes. In contrast, the intervals for 

the azimuthal angle vary over each side. For the right side where the node (i, j) 

interfaces the node (z,j + 1), this range is given as 0.57r < tp < I.ôtt. The interval 

i s  g i v e n  a s  t t  <  < / ?  <  2 7 r  f o r  t h e  t o p  o f  t h e  n o d e  ( i , j )  w h i c h  f a c e s  n o d e  ( i  —  l , j ) .  

For the left side of the nodes, the integration is done over l.Svr < y < 2.Sir. The 

integration interval for the bottom side is 0 < 95 < tt. Equations 6.15-6.18 give the 

boundary conditions for a rectangular node. The boundary conditions are given 

in counter clockwise order by starting from the right side surface. The first set is 

provided by the conditions which use Pi^{co36)co3[rrnp) as the weighing function. 

The second set comes from the condition which uses Pi^{co36)sin{nnp). In the 

following boundary condition expressions, the terms and gi^ have one more 

index in addition to the indices which designate the weighing function. That extra 

index is used only if the boundary conditions are discussed specifically for the nodal 

geometry. If the discussion is for the general geometry, that index is dropped from 

the fi^'s and gi^'s. 

(6.18) 

(6.15) 

(6.17) 

(6.16) 

The second set of boundary conditions are only for the 7/^'s. 

^2,/m (6.19) 
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i-lj-1 i-ld i-ld+1 

id id+1 

i+ld i+ld+1 

Figure 6.1: The nodal geometry 
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^1,/m'y/m ^2,lm 

^1,/m'y/m ~ ^2,/m 

^l,lmflm ~ ^2,/m 

(6.21) 

(6.20) 

(6.22) 

In the preceding equations, the subscripts r, t, I and b stand for the right side, 

top, left side and bottom respectively. As can be seen from the above boundary 

conditions, the 6^ and 62,/m'® the same for all four sides of the nodes. When 

all these four conditions are compared, there can be only two parameters changing 

in these conditions. The first one is that the derivatives are with respect to the 

X variable for the first and the third conditions while these derivatives are with 

respect to y for the second and the fourth conditions. The second difference is that 

of the sign in front of the ^'2,/m'®* ^ result, the generation of these boundary 

conditions can be done automatically. The four coefficients for a rectangular region, 

^2,/m' ^1,/m ^2,/m calculated from the following expressions. 

'1,/m = (2^ + 1) co3'^[7n^)cosip pf^{cos6)ain'^ede dip (6.23) 
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2,lm 
{I + m){l + m - 1) / \ r/ 

-co3{m(p)cos[{m -  l)<fi\cos<pdtp 
JT J  2L;_i 

[/; + 

A 
^ (1 + ̂ (0 -m)) 

2S/_l 

(/. 

coa[(m 4- l)(p]cos{mip)dtp 

+ 

/•^ (Z - m + 1)(Z - m + 2) ^ ^ r/ -.si j 
/- -cos{m(p)cos{[m -  l)(p]cosipdifi 

^7 ^^l+l 
TT [/. 0 
37r /T (1 + <^(0 - ?Tl)) R ,  . , ,  . , 

r= co3[{m + l)ip\co3{m(p)co3<pd(fi 

1/. (6.24) 

In this last equation, 6(0 — m) is the 'dirac delta function and it is nonzero 

only for the cases where m = 0. If the equation 6.24 is studied, it seen that this 

expression is a summation of four terms. The second, the third and the fourth of 

these terms vanish for certain cases. 

I f l  =  0 o r m  =  0 o r l  =  m  =  0 ,  t h e n  T e r m  2 = 0 

If I — m, then Term 3 = 0 

If m = 0, then Term 4 = 0 

The 6's used in equations 6.19-6.22 are determined in a similar manner to the 

6's in the following two expressions. 
Stt 

bi^l^ = {21 + 1) 3in'^{m(p)cosip P^^{cosd)3in^6d9 d^p (6.25) 
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h,lm = 

{ l  +  m ) { l  +  m - l )  \  .  r /  I S  1  J  
-3tn[m(fi)sin[{m - l)ip\cos(pd(p 

[/; + 

3ir 
f ~ T  (1 H- ^(0 - m)) ... , ,s 1 . / \ , 

— ain[(m + l)v'J>s2n(m^)co3^a^ 
y Y 22J/_.i 

{ I - m  +  l ) { l - m  +  2 )  .  ,  \  .  r /  ,  j  
r;=p sin(my5)3tn[(m - l)ifi\co3(pd(p 

—^^^ain[(Tn 4- l)ip]sin{mip)co3ipd(p 
/? 2L/^1 

[/. 

[/. 

u (6.26) 

This second type boundary condition varies from the first type condition in an 

important aspect. It does not exist for m = 0. In addition to that, the third term 

vanishes for the cases where I = m. 

Now we can look at the right sides of the boundary conditions and 

The expressions and gi^ depend on the type of boundary surrounding the 

node. The types of boundaries used in this dissertation are classified into three 

groups. The first type is the external boundary. The second type is an interface 

between two adjacent nodes. The last one is again an interface. The last type differs 

from the second type in one important aspect. The order of the Pn approximation 

in the current node is higher than the adjacent node. 

For the external boundaries, we tried to manipulate the boundary conditions 

into albedo type boundary conditions. In doing so, we used the principles given by 
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the equations 6.27 and 6.28. The principles are basically the same as Davis's vari­

ational principle. The only difference is the integration interval.We also multiplied 

that expression by the albedo a. If a takes the value 1.0, the external condition 

becomes a full reflective condition. If a takes the value 0.0, the condition becomes 

a vacuum boundary condition. By changing the a, we can impose any condition 

on the external boundaries. The spherical harmonic moments and the neutronic 

parameters used in calculating these boundary conditions are taken from the node 

where the external boundary will be implemented. 

= a A - n.a Pi^{co39)cos{m(p)3in6d6d(p (6.27) 

5'/m ~ A o n 0) + $"(f, f2) Pi^{co3$)sin(m(p)3in9ddd<p (6.28) 

As can be seen from the second type of the external boundary condition, it is 

multiplied by a minus sign. The reason is that the integrand of the second type 

condition is in fact the component tangent to the surface of the domain. Therefore, 

the signs of the derivative terms in the left and the right hand sides of the boundary 

conditions should be the same. The minus sign multiplying the albedo a in the 

expression for gi^ is used for that consideration. Without that minus sign, the 

derivatives in both sides of the boundary conditions would have opposite signs. 

The rest of the manipulation of the external boundary conditions are exactly the 

same as for the left sides of the boundary conditions. 

fr,lm = 

ft,lm = 

^2,/m 

^2,lTn 
Im 

dy 

(6.29) 

(6.30) 
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f l M  = 
d ^ i  

^2,/m (6.31) 

fb,lTn = 0=6 ^ I j l m ^ l m  ^2,/m Q y  
(6.32) 

As with for the left hand sides of the boundary conditions, the second set is 

again for the second type of boundary conditions. If the following expressions are 

compared to the left sides, one point can be observed easily. Since the signs of the 

7's are opposite at the boundaries, the only condition which can satisfy that type 

of boundary conditions is that all 7's should be zero at the boundaries. 

9TM = -«r 

9t,lm = 

91,Im = 

9b,Im = -«6 

^l,lrrC(lm ~ ^2^lm Q ^ 

d^l 
~ ^2,/m Q y  

d'y] 
^l,lrnnim ^2,lm Q ^ 

d^l 
^2,lm Q y  

(6.33) 

(6.34) 

(6.35) 

(6.36) 

The second type of boundary is the nodal interface type. In that type, the 

materials on both sides of the interface may be the same or different. In this case, 

the right sides of both boundary conditions are given by the same expressions as 

the left sides of the equations below. The only difference in this case is that the 

moments and the neutronic parameters which will be used in forming the right side 

term are taken from the adjacent node. 

f l m ~  /-n ^ ' ^ { f , Û )  +  ' 9  { f , Û ) ]  P i ^ { c o s 9 ) c o 3 { m ( p ) s i n 6 d ô d ( p  (6.37) 
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3lm~ /-o '9'^{f,Û) + '^~{r,Û)\Pi^{cosB)ain{rTnp)3in9d9d^ (6.38) 
vTl.di^U 

If these two expressions are manipulated as in the other cases, we get the 

following conditions, which are exactly the same as the left sides of the boundary 

conditions. Although they are not shown explicitly, the and 62,im be 

using different neutronic pa'rajneters if the materials in two adjacent nodes are not 

the same. 

^T,lm ~ ^2,2m (6.39) 

^t,lm ~ ^2,/m Qy (6.40) 

5$; 
^l,lm ~ ~ ̂ 2,lm 

H,lm ~ " ̂2,lm Qy (6.42) 

The second set of boundary conditions are for the 7/^'s in the previous cases. 

d y j  
3r,lm ~ ^2,/m Q^ (6.43) 

d ^ j  
9t,lm = h + h.lm -q^ (6-44) 

d'il 
91,Im ~ ^\,lwnim ~ ^2,lm q^ (6.45) 

d'y] 
9b,Im ~ ~ ^2,lm Qy (6.46) 

The last of the boundary types to be investigated is the interfaces where two 

nodes, which use different order Pn approximations, intersect. That type of bound­

ary condition becomes important when the modular approach is adapted for solving 



www.manaraa.com

53 

the neutron transport equation. In the modular approach, the neutron transport 

equation is approximated by different orders of the Pn approximation in different 

nodes. In such a case, the moments utilized in one node may not be used in the ad­

jacent node because the order of the approximation in that adjacent node is lower. 

If the current node uses a higher order than the neighboring node, then all the 

boundary conditions for the moments which are not utilized in the adjacent node 

are set equal to zero. In other words, for these higher moments the boundary con­

ditions are the same as the vacuum condition where the inbound weighted fluxes 

are set equal to zero. The practical application of that is done by setting all //^'s 

and equal to zero. 

The following equations give the P3 boundary conditions for the right side of 

a rectangular region. The boundary conditions for the top, left and bottom sides 

can be determined by using equations 6.16-6.18. 

350$22 

(6.50) 

(6.49) 

(6.47) 

(6.48) 
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7 THE DEVELOPMENT OF THE NODAL METHOD 

This chapter introduces the development of the nodal method. The nodal 

method developed here uses the principles previously laid down for the multigroup 

diffusion theory by Rohach [28-31]. The method is based on a least squares mini­

mization principle. The spherical harmonic moments are expanded into fourth order 

Legendre polynomials. The boundary conditions are used in the determination of 

the coefficients of the Legendre polynomials in an integral sense, so that the neutron 

balances in the nodes are preserved. 

Since the Legendre polynomials are used in an interval from 1.0 to —1.0, the 

equations 5.42, 5.43 and 5.44, which give the governing equations in general terms, 

should be transformed into the new coordinate system. In this coordinate transfor­

mation, the node shown in the Figure 7.1a is taken as the starting point. As can be 

seen from that figure, the width of the node is 2( while the height is 27/. The inter­

section point of the diagonals is taken as the center of the coordinates. The node 

with new coordinates is shown in Figure 7.1b. In that new system, the z-coordinate 

is now transformed to the u-coordinate while the ^/-coordinate is transformed to the 

ty-coordinate. That transformation is reflected to the equations 5.42, 5.43 and 5.44 

by modifying the three operators used in these equations in the following way. 

= + W (^-1) 
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-V 
< c 

(a) 

V f ,  

u 

-1 

-1 

(b) 

Figure 7.1: The coordinate transformation 
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I 1 
(7.2) 

(7.3) 

d x ^  d y ^  

d^ 1 d^ 
d x d y  C v  d u d w  

After the three modifications made above, equations 5.42, 5.43 and 5.44 are 

rearranged as the following"three equations. 

^0*00(^''"') = 3Si5oo('",ty) -
1 1 

4-

+ 6 

du^ rp' dw^ 

1 ^2 1 

^2 Qy 2 ^2 Qyj2 

*20 + 

$22 (7.4) 

I 1 ^2 
+ 

(2 du^ Tp" dw^ 
[*il + 

1 d' 1 d' 

+ 

(2 du^ rp" dvP-

1 

[^] [$]2 

^ T j  d u d w  Ml (7.3) 

^27/m(®'2/) = 
1 a2 1 ^2 

+ 
(2 Q'lfi rp- Qyp- C\b\2 + 

1 ^2 1 ^2 " 

+ 

^2 9U2 Tp dw^ 

1 

( r j  d u d w  
[D| ($l3 

where : 

Iq = -
1 ^2 1 ^2 

+ 
(2 du^ rp dw^ 

Li = + A2S/+1) 

+ 3SqS]^ 

' 1 92 1 g2 ' 

^2 5«2 rp dw^ 

D [7] 3 

(7.6) 

(7.7) 

(7.8) 
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' 1 1 
7^2 ^10 2 + ^3^/-l^/^/+l (7.9) 

The first step in the development of the nodal method is to approximate the 

spherical harmonic moments by fourth order Legendre polynomial expansions. Since 

the number of the spherical harmonic moments, in other words the dependent vari­

ables, vary with respect to the order of the spherical harmonic approximation, we 

will show the development of the nodal method for a generic moment $(«,1/;). Since 

all the governing equations will assume the same form as shown by equations 7.4, 

7.5 and 7.6, the development introduced in the following section is valid for all the 

spherical harmonic differential equations. The Legendre polynomial expansion for 

the generic moment is given by the following expression. 

Once this approximation is made, the problem of solving the neutron transport 

equation is reduced to determining the fifteen coefficients o^^s of the expansion 7.10. 

This goal can be achieved by forming fifteen algebraic conditions for each spherical 

harmonic moment. These conditions are provided by both the least squares mini­

mization scheme to be implemented for the governing equations and the boundary 

conditions. The procedure for determining these conditions is given in the following 

sections. 

7.1 The Least Squares Minimization Technique 

The least square minimization technique which provides some of the condi­

tions for determining the coefficients of the Legendre polynomials for the spherical 

4 4-z 

1=0 J=0 
(7.10) 
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harmonie moments is a variation of the conventional least squares method. There­

fore, some insight is given for the conventional implementation of the least squares 

method. For describing the least squares technique, we can use the following differ­

ential equation. 

A u { f )  = /(f) (7.11) 

where A is a differential operator. 

For solving that differential equation, the dependent variable u is approximated 

by an expansion which also satisfies the boundary conditions. 

N 
" = E (7.12) 

z=0 

The substitution of the above expansion into the differential equation 7.11 does not 

satisfy the equality and results in a residual. 

R { r ]  = .4u(fO - /(f) (7.13) 

For a proper representation of the dependent variable u [ r )  by the approximation 

û(f), the residual should be minimized. This is achieved by the following procedure. 

^ ̂  = 0 f o r i  =  0 , . . , N  (7.14) 

As is seen from the conventional application of the least squares method sum­

marized above, the method is based upon the fact that the expansion û(f) satisfies 

the boundary conditions exactly. As was discussed in the sixth chapter, the bound­

ary conditions to be used here are mixed type conditions. The Legendre polynomial 

expansions used in that project do not satisfy these mixed type boundary conditions 
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explicitly. Therefore, the least squares method can not be used in its conventional 

form. The least squares minimization technique which was used in this project 

is based on the following procedure. Since the right hand sides of the spherical 

harmonic differential equations will be known from the previous iterations, we will 

demonstrate the development of that technique for the following generalized form 

of the differential equations. 

1 1 
+ ^ ( u , w )  +  =  g { u , w )  (7.15) 

^2 1^2 Qyj2 

where the descriptions of the constants A and B are given by the following expres­

sions for equation 7.5. If the vi^'s are replaced by the .4^'s in these expressions, the 

constants for the equation 7.6 are obtained. 

^ (T.16) 

B = (7-17) 

The development of the minimization conditions starts by substituting the 

Legendre expansion 7.10 into the differential equation 7.15 as was done with the 

conventional method. At that point, the Laplace operator in the equation reduces 

the fourth order moment expansion by two orders. That resulting polynomial can 

be rearranged into a second order Legendre polynomial with new coefficients. These 

new coefficients are combinations of the coefficients of the original expansion. Since 

the resulting expression does not satisfy the differential equation exactly, we end 

up with a residual. That residual is given by the following expression. 

2 2-i 4 4-2 
R { u , w )  =  /I ^  22 C i j P i { u ) P j { w )  +  B  C i j P M P j { w )  -  9 { u , w )  (7.18) 

i=0j=0 i=0i=0 
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As can be seen from the equation 7.18, the residual is a combination of two 

polynomials and g{u,w). The first polynomial is a second order Legendre poly­

nomial while the second one is still a fourth order polynomial. The coefficients of 

the first polynomial are combinations of the coefficients of the original spherical 

harmonic expansions. These newly defined coefficients for the first polynomial are 

given by the following six expressions. 

CQO = ^(3020 + 10"40) + ^(3a02 + 10"04) (7-19) 

CQl = ^3o21 + ^15ao3 (7.20) 

C02 = ^3a22 + ^35oo4 (7.21) 

CIO = ^15^30 + (7.22) 

cii = ^ISagi + ^15ai3 (7.23) 

C20 = ^35a4o + ^3a22 (7.24) 

At this point, we carry out the minimization procedure. If the conventional 

application is studied carefully, it seen that the minimization is actually done by 

forcing the two polynomials close to each other. Since the right hand side of the 

differential equation is not approximated, the degree of the agreement between the 

two polynomials will determine the success of the minimization procedure. In our 

approach, instead of tuning up both of the polynomials in the residual, we keep 

one of these polynomials fixed while adjusting the other polynomial for minimizing 

the error. This is done by manipulating the coefficients of the first polynomial so 
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(7.25) 

that the difference between the first and the second polynomial is minimized. This 

approach can be expressed mathematically by the following expression. 

•1 yl 

' i j  

where: i = 0,1,2 and j = 0, ..,2 — i 

When these integrations are carried out, the following six conditions are ob­

tained. 

I 11 1 ~ 0 

A 

.4 

A 

A 

-"2(3020 + 10040) + -2(3002 + IO004) 
V 

+ BaQQ = -Goo 

33021 H- ^15oo3 

^3O22 + ^35004 

iglSogo + -ô3oi2 
V 

^15031 + ^15ai3 

235o4Q + ^3o22 

+ = 4<^01 

+ ^«02 = 4^02 

+ -^«10 = 4(^10 

g 
+ •^^11 = 4(^11 

+ Ba20 = -(?20 

(7.26) 

(7.27) 

(7.28) 

(7.29) 

(7.30) 

(7.31) 

where the right hand sides of the above equations are given by the following expres­

sion. 

G i j  =  [ g { u , w ) P i { u ) P j { w ) ] ^  d u d w  (7.32) 
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The manipulation of the function g{u,w)^ the right hand side of the equation, 

is done in a manner similar to the treatment of the moment operated on by the 

Laplace operator. The g(u,w) is usually a combination of the various terms which 

are in fact spherical harmonic moments operated on by one of the three differential 

operators given by 7.1, 7.2 and 7.3. We designate the known moment as $ and 

expand that moment in the following fashion. 

4 4-2 
$(u,'u;)= ^ H j P i { u ) P j { w )  

i=0 j=0 

If the moment $(u,u;) is operated on by 

the G^j through the following six expressions 

1 . 1 

1 ^2 1 ^2 
^ du^ ^ dw^ 

(7.33) 

, it contributes to 

r f O O  = 4  

•'01 = 5 

àw = \ 

•'11 = 1 
(^20 = \ 

^(3020 + 10040) + ^(3002 + 10âo4) 

^3621 + ^15003 

^3022 + ^35ào4 

^15à3o + ^3(112 

^15031 + ^15^13 

1 
^35640 + ^3^22 

If this operator is 

by the following six expressions 

(7.34) 

(7.35) 

(7.36) 

(7.37) 

(7.38) 

(7.39) 

, then the contribution of #(it, w) is given 
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GQO = 4 

4 
«01 = 3 

=02 = 5 

4 
«10 = 3 

4 
«11 = 9 

4 
«20 = i 

^(3020 + 10à4o) - ̂ (30Q2 + lOâg^) 

^3O2I - ̂ 15003 

^3022 ~ 

• 1 , 1 , . • 
^15030 - ̂3<XI2 

^15031 - ̂ 15013 

^35(140 - ̂ 3022 

(7.40) 

(7.41) 

(7.42) 

(7.43) 

(7.44) 

(7.45) 

1 Q2 
The last type of contribution comes from the ^ dudw ' equations for that 

group is listed below. 

4 
/oo = + <113+ 0311 

f 4 ' 
/01 = ^(^12 

(7.46) 

(7.47) 

(7.48) 

(7.49) 

(7.50) 

(7.51) 

r 4 . 
/02 = ^«13 

f 4 , 
flO = ^«21 

f 4 , 
/ll = ^«22 

r 4 , 
/20 = ^(^31 

The right hand sides Gj^'s are formed by combining the contributions from 

cijj's, ejj's and /^j's for which the full expressions were given above. As can be seen 

from these minimization conditions, they provide only six of the fifteen conditions 

which are required for determining all of the coefficients for the moment expansions. 

The rest of the conditions must be provided by the boundary conditions. 
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7.2 The Implementation of the Boundary Conditions 

The introduction of the boundary conditions into the nodal scheme is done 

in a way such that the neutron balance is conserved in the nodes. In fact, this is 

the reason why the overall scheme can be classified as a nodal method. As was 

done in the least squares section above, the equations for the boundary conditions 

will also be derived for a generalized form of the equations. For doing that, the 

indices designating the moments will be dropped from the equations. In doing so, 

the boundary conditions are expressed by four equations. As is always the case, the 

first and the second types of equations have the same form. 

The indices r, (, I and b in the above equations stand for the right, top, left 

and bottom sides of the nodes. The boundary conditions for each side is integrated 

over the half ranges of the nodal surfaces. That integration procedure results in 

eight conditions which are shown below. 

(7.55) 

(7.53) 

(7.54) 

(7.52) 

^1®00 + (^1 + + (h + 3-^)a2o + (6i + 6-^)030 + (ij + 10-^)040 

+ 2 ^1°01 + (h + + (h + 3-^)021 + (&! -t- 6-^)031 

h"03 +  (h +  ̂ )«13 =  JQ  f r { w ) d v j  (7.56) 
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h°00 + (^1 + + (^1 + 3-^)a2o + {bi + 6-^)030 4- {bi + 10-^)040 

h ih h^oi + (^1 + "^)<^11 + (h + 3—)o21 + (^1 + 6-^)a3i 

1 
+ 8 6iao3 + (61 + yXisj = J_^ fr{w)dw (7.57) 

^1°00 + (^1 + ^^)ooi + (^1 + 3^)ao2 4- (&! + 6-^^)093 + (ôj + 10-^)oo4 

1 
+ 2 h H Q  + (^1 + + (^1 + 3-^)ai2 + (^1 + 6-2)&i3 

.62 

61030 + (h + ^)®31 = L fMdu (7.58) 

h^oo + (^1 + + (^1 + 3-^)002 + ih + ®"^)®03 + (h + 10-^)ao4 

^1^10 + (^1 '^)^11 + (^1 + 3 —)ai2 + (6% + 6—)ai3 

1 
+ 8 61030 + ih + ^)®3l] = /_J fti'^)'iu (7.59) 

&1G00 ~ (h + •^)oiO + (^1 + 3-^)a20 ~ (^1 + 6-^)030 +• (^1 + 10-^)a4o 

hoQl - ih + •^)®11 + (h + 3-^)021 - ih + ®";^)o31 

1 

8 
&1G03 ~ (^1 + ^r)ai3 = JQ fli^)<i^ (7.60) 
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^l^OO " (^1 + (^1 + 3-^)a2o - (^>i + ^•y)o-ZQ + (^1 + 10'^)®40 
C 

^1^01 ~ (^1 + ir)ail + (&! + 3-^)021 - (61 + 6-^)031 
C 

A 

c 
M 
c 

h 
c 

& 
c 

h ^ 0 3  -  ( h  +  ̂ M s ]  =  / _ ^  f i ( w ) d w  (7.61) 

h®00 ~ (^1 + + (^1 + 3-^)ao2 - (61 + 6-^)ao3 + (61 4- 10-^)ao4 

h^lO - (^1 + ^^)G11 + (h + 3-^)a%2 - (^1 + 6^^)013 
1 

+ 2 

61030 - (h + ^)®3l] = /q^ fb(^)du (7.62) 

6l®00 - (h + -^)(^01 + (h + 3~)aQ2 - (&! + 6-^)003 + (6% + 10-3)°04 h 
V 

& 
V 

h ^ i o  ~  ( h  + "^^^ii (^1 + 3-^)^12 - ( h  + ®"^)"i3 

1 
+ 8 61*30 ~ (61 + •^)®31 = J_^ fbi^)d-U' (7.63) 

When the minimization conditions given by 7.26-7.31 and the boundary con­

ditions 7.56-7.63 are added, it is seen that they total up to fourteen which is one 

short for determining all fifteen coefficients. This problem is bypassed by setting the 

coefficient 022 equal to zero. This specific coefficient is chosen to be zero because 

the affect of elimination of ^22 the accuracy of the method is negligible [31]. 

Before the formulation of the nodal method is finished, a last step is introduced for 

simplifying the final forms of the equations. 
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7.3 The Simplification of the Equations 

If a problem is solved for only a single node, then the simultaneous solution 

of the fourteen algebraic equations introduced above would provide the coefficients 

used in the Legendre polynomial expansions of the spherical harmonic moments. 

The fourteen coefficients can be determined by solving a 14 by 14 matrix. If steps 

which will be used in the solution of the matrix are introduced into the equations 

analytically, the 14 by 14 matrix can be arranged into smaller matrices which would 

speed up the solution process considerably. One other advantage of doing this is 

to conserve storage space on a computer. When the fourteen algebraic equations 

are manipulated, the set of simultaneous equations can be broken into four smaller 

matrices. One of these matrices is 5 by 5 while the other three matrices are 3 by 3. 

The first group of the equations which form the 5 by 5 matrix are given below. 

The second set of simultaneous equations is given by the following expressions. 

(7.65) 

(7.64) 

(7.69) 
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{bi + - -(61 + y)ai3 + (6% + -^)a3i = ^ ^ [/r(i") - fli'^)] dv3 

-  \ j \  [/r (w)  -  f i iw)]  dw (7.70) 

i h  + - ^ ) H 1  +  i h  +  ^  =  2/ )  [ f M ~ f b i ' ^ ) ] ' ^ ' ^  

- \ - fbi^)\ du (7.71) 

The third 3 by 3 matrix is formed by the following three equations. 

I S A  3 A  3 ^  -  ,  
BaQi + -jp-oo3 + -^<121 = -C?oi (7.72) 

h«01 -  + ih  +  ̂ )«21 ̂  2  Jq  [M' ^ )  +  /z(^)] -

2 + fiiw)]dw (7.73) 

ih  + + ih  +  ̂ )«03 = \  [A(^) -  fbi ' ^ ) \  du  (7.74) 

The last matrix is formed by the following three equations. 

34 15A 3 
Baio + -^012 + -^«30 = 4^10 (7.75) 

6101O + (^1 + ^)H2 - ̂ 61030 = [/<(") + 4(^)1 du -

\ ill + /6(^)| du  (7.76) 

(61 + -^)aio + ih  + ~^)'^30 = 4 [ f r iw)  -  /f(w)] dw (7.77) 
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8 IMPLEMENTATION OF THE METHOD 

This chapter describes the way the modular nodal method has been imple­

mented. The implementation of the method involves three different tasks. The first 

task is to generate the governing equations. The second task is to form the bound­

ary conditions for these spherical harmonic equations. The last task is to develop a 

computer code which would implement the computational procedures described in 

the previous chapters. 

As mentioned above, the first step was to develop a computer code for gener­

ating the second order form of the spherical harmonic differential equations. Since 

the spherical harmonic differential equations will always be the same, for practical 

reasons it was decided to generate them once and then to save the numbers repre­

senting these equations in a library file which can be read by the computer code to 

be developed as the third task. The program generating the differential equations is 

based upon the equations 5.43 and 5.44. The first differential equation given by 5.42 

will always be solved for any order of approximation. Therefore, that equation has 

been built into the computer code that does the calculations. As a result, the library 

file generated for the spherical harmonics differential equations has the information 

only for I > 0. The second task was to generate the boundary conditions. The 

same approach as done with the generation of the differential equations was used 
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for that step too. A computer code which was based on equations 6.23-6.26 has been 

used for generating another library file containing the information for the boundary-

conditions. As in the first library file, this library also contains information for the 

equations for / > 0. Although the current library files have information for the 

approximation, the developed computer codes can regenerate these libraries for any 

order if it becomes necessary. 

The third task was to develop a computer code which would actually implement 

the modular nodal method. The developed computer code currently can handle the 

fixed source and the criticality problems. Both of these problems can be solved for 

either monoenergetic cases or for multigroup cases. The program can also imple­

ment the modular approach for determining the order of the spherical harmonic 

approximation to the neutron transport equation. In a manual mode, the distri­

bution of the orders of the spherical harmonic approximation in the nodes can be 

given as input by the user. The modular approach for determining the spherical 

harmonic approximation can be used for both the fixed source and criticality prob­

lems. Therefore, we will first discuss the application of the modular approach. Then 

the implementation of the method for the fixed source problems will be discussed. 

The methodology for solving the fixed source problems is a subset of the method for 

solving the criticality problems. Once the fixed source method has been discussed, 

the criticality problem method will be discussed by using the information given for 

the fixed source problems. 



www.manaraa.com

71 

8.1 The Implementation of the Modular Approach 

As was mentioned in the Introduction, determining the order of the spherical 

harmonic approximation for a specific problem sometimes may not be easy. The 

chosen order for a problem may be too low or too high. For some problems, the 

order may be higher than required in some regions of the problem while it may 

lower in some other regions. The purpose of implementing the modular approach is 

to avoid the excessive computations or the lack of accuracy which may arise from 

inappropriate selection of the spherical harmonic order for the problems. The idea 

underlying the modular nodal method, which will avoid the inappropriate selection 

of the spherical harmonic order, is that as long as the neutron currents coming 

from the neighboring nodes are known, each node can be treated as a small isolated 

reactor core and can be addressed accordingly. In other words, the amount of 

directional dependency of the neutron flux in the neighboring nodes would have an 

impact only on the boundary conditions of the current node. That would allow us 

to use the proper spherical harmonic order for the specific node. 

The implementation of the idea of the modular approach can be summarized 

as follows. If the spherical harmonics approximation in the adjacent node is of lower 

order, the boundary conditions for the moments which are not used in that adja­

cent node is set equal to zero as shown in the sixth chapter. If the approximation 

in the neighboring node is higher than the current node, we do not need to worry 

about that because the higher order moments in the current node are already zero. 

Through this approach, the nodes in which the neutron flux is approximated by 

different orders of the spherical harmonics expansion can be interfaced. The im­

plementation of the modular approach requires one condition to be satisfied. The 
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method should be able to go to higher spherical harmonics approximation in an 

automatic manner. The reason for this condition is that the problem may require 

very high orders to be used. In such a case, the computer code should be able to use 

these high orders. Since the number of differential equations increases very rapidly 

as the order increases, no general computer code can be developed for very high 

order spherical harmonic approximations due to the complexity and the number of 

equations involved. Instead, the code should implement a numerical method which 

is good for all of the spherical harmonic equations for which the coefficients can be 

read from a library or can be generated in the initialization stage of the code. Since 

manipulating spherical harmonics equations into the equations 5.42-5.44 has been 

accompanied by implementation of an iterative scheme, that iterative scheme can be 

used for comparing two successive orders of the spherical harmonics approximation 

in an efficient manner. If the problem is solved for a specific order, the results will 

be the best initial guess for the succeeding order. This will reduce the amount of the 

computations significantly. The comparison between these two successive orders is 

used to determine if any further increase in the order is necessary for that specific 

node. As will be seen from equation 8.1, the change in the scalar flux is observed 

between two successive spherical harmonics orders. If the change for a specific node 

is smaller than a convergence criteria, the spherical harmonics order is not increased 

in that node any more. Even if the orders are increased in the neighboring nodes, 

the same order calculations are repeated in the specific node. 

Relative Error =| — |  (8.1) 

where n is final order of the approximation in the node. 
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* i/-l/_1 (8.2) 

An alternate mode which the program can handle is to use predetermined 

orders in all nodes. These orders, predetermined by the user, may be homogenous 

in all of the nodes or they may be different in the different nodes. In such a problem, 

the orders are increased in "the nodes up to the specific value for each node. After 

that order, the orders are not increased as is done in the automatic ordering mode 

previously described. 

8.2 The Fixed Source Problems 

The fixed source type problems usually involve a source emitting neutrons 

into the problem domain. This neutron source is independent of the neutron flux. 

However the neutron source can be a function of direction and position. As was done 

in Chapter 5, the external source was here assumed to be isotropic. Therefore, the 

developed computer code can not handle anisotropic external sources. The external 

sources, however, can also be spatially dependent. In this work, the external source 

was assumed to be space dependent over the global domain, while it was taken to 

be flat at the nodal level. As a result, the computer code has capability for handling 

only flat sources. This can be satisfied by setting 5oo(®)y) in equation 5.42 equal 

to a constant in each node. 

The computer code starts with an initialization section. In this section, the 

information necessary for the problem is read from external sources. Then the 

necessary coefficients for the equations are computed by using the information read 

from the external files. The computational part of the computer code is made up 
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of four nested loops. The implementation of the modular nodal method is done 

in this part. If we proceed from the outermost loop to the innermost one, the 

loops can be sequenced as follow. The first loop determines the spherical harmonic 

approximation which will be used. The second loop is for the neutron energy groups. 

The loop following that implements an iterative scheme which decouples the nodes 

from each other. The last and the innermost loop is used for implementing the 

iterative procedure for solving the spherical harmonic equations in the given nodes. 

1. As was pointed out above, the outermost loop determines the order of the 

spherical harmonics approximation to the neutron transport equation. In the 

first entry to this loop, the approximation is a Pi approximation. Every time 

this loop is accessed, the order of the spherical harmonic approximation is 

increased by two. If the approximation orders for the nodes are given as input 

for the problem, this loop is performed until the maximum of these orders is 

reached. If the modular approach with automatic ordering is used, then this 

loop is terminated if one of two following conditions is met. One of these con­

ditions is that the ceiling number for the spherical harmonic approximation is 

reached. That ceiling order is used to keep the computer code from going to 

excessively high orders and it is determined by the user. The other condition 

which will stop the performance of the loop is that the spherical harmonic 

orders do not increase in any of the nodes. In other words, the current distri­

bution of the spherical harmonic orders in the nodes are appropriate to solve 

the problem with enough accuracy. This is true when the errors computed 

through equation 8.1 in all of the nodes are smaller than the convergence 

criterion. 
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2. The second loop is for solving the multigroup problems. That loop is per­

formed as many times as there are neutron energy groups. This is determined 

by the user. The current computer code can only handle the downscattering. 

The downscattering can be eithsr directly coupled or nondirectly coupled. 

3. The third loop, or middle iteration, performs a block Gauss-Seidel iteration 

scheme. In Chapter 7, it was shown that fourteen linear algebraic equations 

should be solved in each node for determining the coefficients of each spherical 

harmonic moment. These equations are actually coupled to the equations in 

the other nodes through the boundary conditions. In other words, the system 

to be solved is fourteen times the total number of the nodes. Instead of solving 

that system simultaneously, the equations are solved in each node by using 

the current values of the coefficients in the neighboring nodes. Once the com­

putations in all the nodes are completed, the values of the spherical harmonic 

moments are compared to the values from the previous middle iteration and a 

relative error is computed. If the convergence criterion is met by that relative 

error, then the iteration is stopped; otherwise the iteration is continued. 

4. The innermost loop implements an iterative scheme for solving the coupled 

spherical harmonic differential equations. This loop is also called the inner it­

eration. It should not be confused with the inner iteration used in conventional 

reactor analysis codes. Each of the spherical harmonic differential equation is 

coupled to the other differential equations as well as to the equations in the 

other nodes. The middle iteration described above decouples that equation 

from the other nodes. In addition to that, the inner iteration separates the 
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equation from the other spherical harmonic differential equations in the same 

node. In that inner iteration, the equations for the lowest moments are solved 

first. The results are used in calculating the right sides of the equations for 

the higher moments. The updated values of the higher moments are used for 

determining the righthand sides of the equations for the lower moments. The 

iteration is analogous to the Gauss-Seidel scheme if each differential equation 

can be likened to an algebraic equation. The iterations are terminated if a 

maximum iteration number is reached or the relative error computed after 

each iteration satisfies the convergence criterion. 

In criticality problems, the source term is formed by neutrons originating from 

fission. Therefore, the source is affected by the neutron flux levels. For this case, 

the source term 5oo(®îÎ/) is given by the following expression. 

where : 

k is the multiplication factor, 

is the fission cross section. 

V is the number of neutrons emitted per fission 

In criticality problems, the determination of the multiplication factor k is an 

ultimate goal. The scheme used in determining the multiplication factor requires 

some modifications in the scheme described for the fixed source problems. A new 

loop is inserted between the first loop and the second loop. This new loop imple-

8.3 Criticality Problems 

(8.3) 
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ment s an iteration which is also known as the outer iteration or the source iteration. 

This iteration is started by assigning an initial guess both for the multiplication fac­

tor and for the scalar flux $Qo(a;,y). This forms a problem with a known source 

just as in the case with the fixed source problem. Therefore, the rest of the scheme 

is the same as the fixed source problem. When the results are obtained for that 

initial guess, the multiplication factor is updated by using the following expression. 

A" = 

where n in the above equation is the iteration number for the source iteration. 

Once the multiplication factor is updated, the new source can be computed by 

using the new values of the multiplication factor and the scalar flux as was done with 

the initial guess through equation 8.3. When the relative error computed by using 

two successive values of the multiplication factor is smaller than the convergence 

criterion, the source iteration is terminated. If the problem requires higher order 

spherical harmonics approximations, the same steps are repeated for that higher 

orders too. One important point in criticality problems is that the middle iteration 

described for the fixed source problem is not applied for criticality problems. This 

step is performed only once. The criticality problem requires the same problem to 

be solved with sources which are not significantly different from each other. This 

eliminates the need for the middle iteration. 

(8.4) 
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9 RESULTS 

The method whose development described in the previous chapters of this 

dissertation has been used for solving five benchmark problems. This chapter covers 

these five test problems and their results. The first three of these problems are 

fixed source problem and the last two are criticality problems. While some of these 

problems are one group problems, others are multigroup problems. Therefore, the 

test problems represent a wide spectrum of the problems which can be met in 

nuclear applications. 

One of the important points in the evaluation of test results is the stability of 

the method. For evaluating this stability, some problems are solved for various node 

sizes and the results for these various node sizes are compared. One other indicator 

which was used for observing the performance of the method is the accuracy of 

the scalar flux. In most of the problems, the scalar flux has been compared to 

the benchmark results. For some other cases, the integral quantities of the scalar 

flux were used for evaluation purposes. For criticality problems, the quantity which 

was used as the performance criteria was the multiplication factor. Since a modular 

approach has been introduced in this work, some of the problems have also been used 

for determining how that modular approach performed and how the results provided 

by that approach have been compared to results where the spherical harmonic 
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approximation is homogenous throughout the problem domain. 

The first test problem is a one group fixed source problem. This problem has 

been widely used by Fletcher [13-17]. For that problem, Fletcher published his 

own results and a exact solution. While his results are based on a finite differ­

ence method, the details about the solution that he refers as the exact solution 

can be found in [13]. As can be seen in Figure 9.1, the problem domain is a 

square with a sidelength of 4.0 cm. The top and the right sides of the problem use 

vacuum boundary conditions while the other sides are reflective conditions. The 

material of the problem is a purs absorber and the problem domain is homoge­

nous. The total cross section for the region is = 1.0 cm~^ and the scattering 

cross section is = 0.0 cm~^. The problem has a normalized constant source 

S = 0.69444 neutTon3.cm~'^.sec~^ in a 1.44 CTTP" zone at the lower left corner. 

This problem has been used for studying both the stability and the accuracy of the 

nodal method. 

For testing the numerical stability of the method, the problem has been solved 

for four different configurations for the P3 approximation. Since this approximation 

order also provides the results, the scalar flux for both P-^ and P3 have been 

compared for the various node sizes. These comparisons can be seen in Tables 9.1 

and 9.2, Equal size nodes are used in all of the four configurations. A middle 

iteration convergence criterion of 1.0£J — 6 was used for this problem. 

If Tables 9.1 and 9.2 are studied, the following trend can be seen. While the 

differences between the 4x4 node configuration and the 5x5 configuration can go 

up to the order of 0.1, the differences between the 6x6 configuration and the 8x8 

configuration are on the order of l.OE — 3. As a result of this trend, we can say that 



www.manaraa.com

80 

y 

4.0 

1.2 

Source 

0.0 1.2 4.0 X 

Figure 9.1: The geometry and dimensions for Fletcher's problem 
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Table 9.1: Comparisons of the Pi approximation scalar fluxes for 
Fletcher's problem at y = 3.9 cm for various configurations 

Distance 4x4 Nodes 5x5 Nodes 6x6 Nodes 8x8 Nodes Exact 
(cm) 
0.1 2.098E-3 2.062E-3 2.055E-3 2.052E-3 2.603E-3 
0.3 2.027E-3 2.020E-3 2.017E-3 2.014E-3 2.569E-3 
0.5 1.953E-3 1.953E-3 1.948E-3 1.953E-3 2.502E-3 

•0.7 1.944E-3 1.864E-3 1.857E-3 1.859E-3 2.408E-3 
0.9 1.741E-3 1.731E-3 1.730E-3 1.724E-3 2.286E-3 
1.1 1.563E-3 1.586E-3 1.589E-3 1.589E-3 2.143E-3 
1.3 1.410E-3 1.436E-3 1.432E-3 1.428E-3 1.985E-3 
1.5 1.292E-3 1.275E-3 1.271E-3 1.270E-3 1.818E-3 
1.7 L157E-3 l.lllE-3 l.llOE-3 l.lllE-3 1.646E-3 
1.9 l.OOOE-3 9.492E-4 9.568E-4 9.521E-4 1.475E-3 
2.1 8.182E-4 7.907E-4 8.070E-4 8.074E-4 1.307E-3 
2.3 6.172E-4 6.714E-4 6.748E-4 6.760E-4 1.149E-3 
2.5 4.080E-4 5.579E-4 5.545E-4 5.540E-4 l.OOOE-3 
2.7 4.099E-4 4.535E-4 4.492E-4 4.510E-4 8.652E-4 
2.9 3.522E-4 3.577E-4 3.629E-4 3.614E-4 7.426E-4 
3.1 2.988E-4 2.831E-4 2.874E-4 2.877E-4 6.335E-4 
3.3 2.438E-4 2.258E-4 2.211E-4 2.246E-4 5.369E-4 
3.5 1.850E-4 1.776E-4 1.769E-4 1.793E-4 4.528E-4 
3.7 1.246E-4 1.360E-4 1.360E-4 1.362E-4 3.802E-4 
3.9 6.857E-5 l.OOOE-4 1.024E-4 1.030E-4 3.179E-4 
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Table 9.2: Comparisons of the Pz approximation scalar fluxes for 
Fletcher's problem at y = 3.9 cm for various configurations 

Distance 
(cm) 

4x4 Nodes 5x5 Nodes 6x6 Nodes 8x8 Nodes Exact 

0.1 2.342E-3 2.414E-3 2.436E-3 2.439E-3 2.603E-3 
0.3 2.247E-3 2.376E-3 2.396E-3 2.404E-3 2.569E-3 
0.5 2.198E-3 2.315E-3 2.333E-3 2.334E-3 2.502E-3 
0.7 1.913E-3 2.209E-3 2.230E-3 2.236E-3 2.408E-3 
0.9 1.820E-3 2.091E-3 2.107E-3 2.109E-3 2.286E-3 
1.1 1.562E-3 1.952E-3 1.966E-3 1.964E-3 2.143E-3 
1.3 1.962E-3 1.810E-3 1.799E-3 1.800E-3 1.985E-3 
1.5 1.719E-3 1.646E-3 1.634E-3 1.635E-3 1.818E-3 
1.7 1.601E-3 1.492E-3 1.469E-3 1.466E-3 1.646E-3 
1.9 1.473E-3 1.327E-3 1.299E.3 1.299E-3 1.475E-3 
2.1 1.269E-3 1.152E-3 1.145E-3 1.144E-3 1.307E-3 
2.3 9.959E-4 1.006E-3 l.OOlE-3 9.957E-4 1.149E-3 
2.5 7.283E-4 8.813E-4 8.610E-4 8.628E-4 l.OOOE-3 
2.7 6.637E-4 7.537E-4 7.401E-4 7.407E-4 8.652E-4 
2.9 6.207E-4 6.260E-4 6.331E-4 6.313E-4 7.426E-4 
3.1 5.530E-4 5.266E-4 5.332E-4 5.357E-4 6.335E-4 
3.3 4.627E-4 4.515E-4 4.465E-4 4.489E-4 5.369E-4 
3.5 3.562E-4 3.742E-4 3.739E-4 3.736E-4 4.528E-4 
3.7 2.447E-4 2.980E-4 3.039E-4 3.052E-4 3.802E-4 
3.9 1.434E-4 2.265E-4 2.375E-4 2.404E-4 3.179E-4 
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as the node sizes decreases, the scalar fluxes converge to some limiting values. Due to 

this convergence and due to the fact that the results are still reasonable for relatively 

large node sizes, we can say that the nodal method has stable characteristics. In 

addition to the stability evaluation, Fletcher's test problem has also been used for 

evaluating the behavior of the method as the spherical harmonic approximation 

order increases. For a successful application, the scalar fluxes should converge to 

the exact solution as the spherical harmonic order increases. For this purpose, the 

problem has been solved for a Pf approximation. The approximation orders were 

homogenous in all the nodes. A 6x6 nodal configuration has been used for this 

problem. The comparison of the results to Fletcher's results is given in the Table 

9.3. The same results are also compared to the exact solution in graphic form in 

Figure 9.2. 

If we study the results presented in the Figure 9.2 and Table 9.3, we can make 

the following observations. The P5 and Py approximations provide results compa­

rable to the exact solution. This can be seen in Figure 9.2. Although it is quan­

titatively of the right magnitude, the fy approximation displays some variations. 

This points out a convergence problem since the number of spherical harmonic 

differential equations increases rapidly. The lack of these variations in the lower 

approximation results supports that conclusion. Other than this perturbation, all 

of the approximations seem to underestimate the exact solution at the right end 

of the domain. This same observation is also valid when the comparison is made 

by taking Fletcher's results as the reference values. The underestimation may arise 

from the fact that the boundary conditions are implemented in an integral sense. 

Since the neutron source is at the lower left corner of the domain, the integral im-
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Figure 9.2: The scalar fluxes for Fletcher's problem at y=3.9 cm for various spher­
ical harmonic approximations 
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Table 9.3: Comparisons of the scalar fluxes to Fletcher's results at y=3.9 cm 

Distance Pz Ps Pi Pr 
(cm) Fletcher Fletcher Fletcher 
0.1 2.43E-3 2.53E-3 2.61E-3 2.62E-3 2.61E-3 2.59E-3 
0.3 2.39E-3 2.50E-3 2.56E-3 2.59E-3 2.54E-3 2.56E-3 
0.5 2.33E-3 2.43E-3 2.48E-3 2.52E-3 2.46E-3 2.49E-3 
0.7 2.23E-3 2.34E-3 2.36E-3 2.43E-3 2.30E-3 2.40E-3 
0.9 2.10E-3 2.23E-3 2.22E-3 2.3GE-3 2.14E-3 2.28E-3 
1.1 1.96E-3 2.10E-3 2.06E-3 2.16E-3 1.99E-3 2.13E-3 
1.3 1.79E-3 1.95E-3 1.89E-3 2.00E-3 1.87E-3 1.97E-3 
1.5 1.63E-3 1.79E-3 1.72E-3 1.83E-3 1.74E-3 1.81E-3 
1.7 1.46E-3 1.62E-3 1.54E-3 1.65E-3 1.57E.3 1.63E-3 
1.9 1.29E-3 1.46E-3 1.34E^3 1.48E-3 1.34E-3 1.46E-3 
2.1 1.14E-3 1.30E-3 1.17E-3 1.31E-3 1.15E-3 1.30E-3 
2.3 l.OGE-3 1.15E-3 1.G2E-3 L15E-3 9.99E-4 1.14E-3 
2.5 8.61E-4 l.OlE-3 8.69E-4 l.OOE-3 8.33E-4 9.97E-4 
2.7 7.40E-4 8.78E-4 7.50E-4 8.72E-4 7.22E-4 8.62E.4 
2.9 6.33E-4 7.58E-4 6.49E-4 7.48E-4 6.33E-4 7.40E-4 
3.1 5.33E-4 6.51E-4 5.50E-4 6.37E-4 5.48E-4 6.32E-4 
3.3 4.46E-4 5.55E-4 4.60E-4 5.40E-4 4.65E-4 5.36E-4 
3.5 3.73E-4 4.70E-4 3.79E-4 4.55E-4 3.84E-4 4.53E-4 
3.7 3.03E-4 3.97E-4 3.00E-4 3.82E-4 3.04E-4 3.80E-4 
3.9 2.37E-4 3.33E-4 2.28E-4 3.19E-4 2.38E-4 3.18E-4 
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plementation of the boundary conditions may not provide strong enough coupling 

to the upper right corner. This argument can be supported by the fact that the 

same underestimation is not observed at the left side of the domain. These results 

are also compared to Fletcher's results to see if the method is in agreement with the 

other methods employing the spherical harmonic approximation to the transport 

equation. The comparison given in the Table 9.3 shows both the nodal method re­

sults and Fletcher's results based upon the finite difference method are in agreement 

in general except at the upper right part of the domain. 

A second test problem is also a fixed source problem used by Natelson [47]. As 

seen from Figure 9.3, the dimensions and the geometry of this one group problem 

resemble Fletcher's problem. However the problems differ at two points. Natelson's 

problem uses reflective boundary conditions all around the domain and the domain 

is not homogenous. The neutronic parameters in the source region and outside the 

source region are not the same. The total macroscopic cross section both inside 

and outside the source region has the value = 1.0 cm~^. The scattering cross 

section inside the source region is = 0.25 cm~^ and Sg = 0.5 cm~^ outside 

the source region. The strength of the source is 5 = 1.0 neutrons.cm~^.3ec~^. 

As it was done with Fletcher's problem, the spherical harmonic orders are chosen 

to be homogenous for all the nodes. In contrast with Fletcher's problem, the exact 

solution is not available for comparison. The nodal method results are compared 

to the spherical harmonic approximation results provided by Kobayashi et al. who 

solved the same problem through a finite difference based method [18]. Kobayashi 

presents his results in graphical form. The numerical form of the results were 

obtained through digitization of the graph. The comparisons of both sets of the 
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Figure 9.3; The geometry and dimensions for Natelson's problem 

results at y = 3.0 cm are shown in the Table 9.4. A very close agreement is apparent 

between two the sets of results for all approximation orders. The differences between 

the two sets of results are on the orders of 1.0%. In Figure 9.4, the scalar fluxes are 

compared for various orders of spherical harmonic approximations. 

A third problem used to test the model is also a fixed source problem formed by 

Gelbard and Crawford [48]. This problem differs from the previous problems on two 

important points. One of these differences is that this problem is a two group prob­

lem. In addition to that, the dimensions of the problem are very large. As seen from 
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Table 9.4: The comparison of the scalar fluxes to the Kobayashi's results at 
y=3.0 cm 

Distance P-3 P-3 P-5 P-5 P-7 P-7 
(cm) Kobayashi Kobayashi Kobayashi 
0.0 3.65E-2 3.65E-2 3.89E-2 3.87E-2 3.94E-2 3.89E-2 
0.2 3.61E-2 3.62E-2 3.84E-2 3.83E-2 3.88E-2 3.87E-2 
0.4 3.53E-2 3.53E-2 3.75E-2 3.75E-2 3.78E-2 3.77E-2 
0.6 3.40E-2 3.42E-2 3.60E-2 3.61E-2 3.61E-2 3.63E-2 
0.8 3.23E-2 3.25E-2 3.41E-2 3.42E-2 3.40E-2 3.44E-2 
1.0 3.02E-2 3.05E-2 3.19E-2 3.22E-2 3.18E-2 3.22E-2 
1.2 2.80E-2 2.81E-2 2.95E-2 2.98E-2 2.96E-2 2.98E-2 
1.4 2.57E-2 2.58E-2 2.69E-2 2.70E-2 2.70E-2 2.70E-2 
1.6 2.34E-2 2.35E-2 2.45E-2 2.36E-2 2.44E-2 2.46E-2 
1.8 2.13E-2 2.14E-2 2.22E-2 2.23E-2 2.22E-2 2.24E-2 
2.0 1.94E-2 1.94E-2 2.01E-2 2.01E-2 1.99E-2 2.02E-2 
2.2 1.78E-2 1.78E-2 1.84E-2 1.83E-2 1.82E-2 1.83E-2 
2.4 1.65E-2 1.65E-2 1.70E-2 1.68E-2 1.69E-2 1.67E-2 
2.6 1.56E-2 1.55E-2 1.60E-2 1.57E-2 L61E-2 1.58E-2 
2.8 1.50E-2 1.50E-2 1.54E-2 1.51E-2 1.55E-2 1.51E-2 
3.0 1.48E-2 1.47E-2 1.52E-2 L50E-2 1.53E-2 1.49E-2 
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Figure 9.4: The scalar fluxes for Natelson's problem at y=3.0 cm for various spher­
ical harmonic approximations 
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Figure 9.5: The geometry and dimensions for Geibard and Crawford's problem 

Figure 9.5, the geometry of the problem is similar to the first two fixed source prob­

lems. The neutronic parameters defining the material to be used is given in the Table 

9.5. The neutron normalized sources used are S = 0.006546 neutron3.cm~^,3ec~^ 

for the first group and 5 = 0.017701 neutrons.cTn~^.sec~^ for the second group. 

Reflective boundary conditions are used all around the problem domain. 

Gelbard's problem was solved with a Pg approximation. The spherical har­

monic orders were homogenous all through the nodes. A 10x10 nodal configura-
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Table 9.5: Neutronic parameters for Gelbard's problem 

Sei St2 Sg,i_2 S,,2-.2 
0.092104 0.100877 0.006947 0.023434 0.00485 

tion was used for solving the problem. The comparisons of the scalar fluxes for 

y = 139.0 cm and y = 80.0 cm for the first group are given in the Table 9.6 and 

Table 9.7. The exact solutions for this problem are provided in [48]. One important 

trend in these results is that the convergence problem pointed out for Fletcher's 

problem is visible for the Fg approximation. Otherwise the approximations up to 

P'j seem to be converging to the exact solution in a smooth manner. This behavior 

can be observed in Tables 9.6 and 9.7. Except convergence problem for the Pg ap­

proximation, the results seem to be in good agreement with the exact solutions at 

both locations. This can be observed in Figures 9.6 and 9.7. The Pi approximation 

gives nonphysical results for this problem and not listed here. 

Gelbard's problem has also been solved by using the modular approach. The 

maximum order of the program has been chosen as Pg. The convergence criterion 

for the spherical harmonic was selected as %1.0. Whenever one of the nodes satis­

fied this convergence criterion, the spherical harmonic order was kept constant for 

the rest of the calculations. Figure 9.8 shows the final distribution of the spherical 

harmonic approximation orders in the nodes. The execution time for this problem 

on the NAS 9160 machine at Iowa State University was 87.1 seconds. This can 

be compared to the execution time of 167.2 seconds for the homogenous case. If 

the problem had been solved for a maximum order of Pj, these execution times 

would have been 82.6 seconds and 68.1 seconds respectively. If Figure 9.8 is studied 

carefully, we can observe the following trends. The computer code implements the 
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Table 9.6: The comparison of the scalar fluxes at y=139.0 cm for the first group 

Distance Pa Ps P7 Pg Exact 
(cm) 
0.0 6.013E-6 6.071E-6 6.103E-6 6.139E-6 6.118E-6 
10.0 5.954E-6 6.020E-6 6.042E-6 6.048E-6 6.062E-6 
20.0 5.776E-6 5.839E-6 5.839E-6 5.722E-6 5.884E-6 
30.0 5.462E-6 5.521E-6 5.586E-6 5.737E-6 5.561E-6 
40.0 4.991E-6 5.070E-6 5.057E-6 5.007E-6 5.070E-6 
50.0 4.331E-6 4.396E-6 4.349E-6 4.258E-6 4.408E-6 
60.0 3.536E-6 3.600E-6 3.630E-6 3.855E-6 3.615E-6 
70.0 2.703E-6 2.744E.6 2.727E-6 2.502E-6 2.773E-6 
80.0 1.905E-6 1.946E-6 2.014E-6 2.046E-6 1.980E-6 
90.0 1.249E-6 1.288E-6 1.328E-6 1.411E-6 1.317E-6 
100.0 7.808E-7 8.279E.7 7.890E-7 6.610E-7 8.225E-7 
110.0 4.563E-7 4.993E-7 4.933E-7 5.716E-7 4.934E-7 
120.0 2.666E-7 3.135E-7 3.077E-7 3.137E-7 3.038E-7 
130.0 1.930E-7 2.421E-7 2.402E-7 2.031E-7 2.261E-7 

Table 9.7: Comparisons of the scalar fluxes at y=80.0 cm for the first energy group 

Distance Pz Ps Pr P9 Exact 
(cm) 
0.0 1.844E-3 1.935E-3 1.941E-3 1.937E-3 1.954E-3 
10.0 1.842E-3 1.932E-3 1.937E-3 1.931E-3 1.951E-3 
20.0 1.828E-3 1.921E-3 1.925E-3 1.921E-3 1.937D-3 
30.0 1.791E-3 1.882E-3 1.886E-3 1.879E-3 1.900D-3 
40.0 1.695E-3 1.768E-3 1.762E-3 1.748E-3 1.810E-3 
50.0 1.510E-3 1.618E-3 1.641E-3 1.644E-3 1.605E-3 
60.0 1.114E-3 1.114E-3 1.107E-3 1.102E-3 L224E-3 
70.0 7.442E-4 8.238E-4 8.321E-4 8.277E-4 7.374E-4 
80.0 3.482E-4 3.264E-4 3.063E-4 2.969E-4 3.562E-4 
90.0 1.551E-4 1.690E-4 1.794E-4 1.875E-4 1.512E-4 
100.0 6.404E-5 6.257E-5 6.493E-5 6.719E-5 6.050E-5 
110.0 2.565E-5 2.294E-5 2.112E-5 1.954E-5 2.375E-5 
120.0 1.041E-5 9.723E-6 1.031E-5 1.147E-5 9.748E-6 
130.0 5.473E-6 5.482E-6 5.420E-6 4.946E-6 5.371E-6 
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Figure 9.6: Comparisons of the scalar fluxes at y=139.0 cm for the first energy 
group 
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Pg approximation for the left lower corner of the domain. Since there is a neutron 

source in this region and the boundary conditions bordering the source region are 

reflective, slower changes in the flux levels are expected in that part of the domain. 

Therefore, the implementation of the P3 approximation in this region is physically 

sound. As we get closer to the outer borders of the domain, the approximation 

orders implemented by the computer code get higher. There is no neutron source in 

the outer region and the absorption becomes an important mechanism in determin­

ing the flux levels. Therefore, sudden drops in the flux levels within short distances 

should be accepted as normal trends in this region. Since the sudden changes in 

the flux levels usually require a more rigorous treatment of the transport equation, 

the higher orders used by the computer code are understandable. 

In Tables 9.8 and 9.9, the scalar fluxes at y = 139.0 cm and y = 80.0 cm for 

the first energy group are compared to the exact solution as has been done with 

the previous case. The notation in these tables require some explanation. When 

an order is noted, this order is the maximum order in the problem domain for that 

solution. Therefore, when the Pg approximation is noted, there may be some nodes 

using fy, fy and P3 approximations. In a similar manner, some nodes may be 

using P3 and fg approximations if a P7 approximation is mentioned. 

As seen from Tables 9.8 and 9.9, the P5 approximation seems to be providing 

results which are more accurate than the Pj and Pg approximations. In other 

words, as the distribution of the spherical harmonic approximation orders becomes 

more heterogenous, the accuracy does not improve. One other test of the modular 

approach was done on the continuity of the scalar fluxes at the interfaces of the 

nodes where the spherical harmonic orders change from one node to the other. For 
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Table 9.8: Comparisons of the scalar fluxes at y= 139.0 
cm provided by the modular method 

Distance Ps Pi P9 Exact 
(cm) 
0.0 6.122E-6 6.063E-6 6.087E-6 6.118E-6 
10.0 6.072E-6 6.087E-6 6.093E-6 6.062E-6 
20.0 5.890E-6 5.959E-6 5.939E-6 5.884E-6 
30.0 5:571E-6 5.749E-6 5.769E-6 5.561E-6 
40.0 5.104E-6 5.175E-6 5.170E-6 5.070E-6 
50.0 4.420E-6 4.400E-6 4.434E-6 4.408E-6 
60.0 3.609E-6 3.633E-6 3.609E-6 3.615E-6 
70.0 2.750E-6 2.737E-6 2.694E-6 2.773E-6 
80.0 L948E-6 1.905E-6 1.893E-6 1.980E-6 
90.0 1.295E-6 1.201E-6 1.203E-6 1.317E-6 
100.0 8.256E-7 7.996E-7 7.842E-7 8.225E-7 
110.0 4.978E-7 5.484E-7 5.569E-7 4.934E-7 
120.0 3.133E-7 3.173E-7 3.242E-7 3.038E-7 
130.0 2.437E-7 2.138E-7 2.061E-7 2.261E-7 

Table 9.9: Comparisons of the scalar fluxes at y=80.0 
cm provided by the modular method 

Distance fg Pg Exact 
(cm) 
0.0 
10.0 
20.0 
30.0 
40.0 
50.0 
60.0 
70.0 
80.0 
90.0 
100.0 
110.0 
120.0 
130.0 

1.887E-3 
1.901E-3 
1.905E-3 
1.882E-3 
1.770E-3 
1.618E-3 
1.113E-3 
8.234E-4 
3.257E-4 
1.691E-4 
6.245E-5 
2.295E-5 
9.699E-6 
5.466E-6 

1.876E-3 
1.895E-3 
1.899E-3 
1.874E-3 
1.767E-3 
1.648E-3 
1.094E-3 
8.368E-4 
3.145E-4 
1.814E-4 
6.641E-5 
2.225E-5 
9.786E-6 
4.927E-6 

1.875E-3 
1.894E-3 
1.899E-3 
1.874E-3 
1.767E-3 
1.650E-3 
1.091E-3 
8.397E-4 
3.081E-4 
1.809E-4 
6.674E-5 
2.232E-5 
1.033E-5 
5.082E-6 

1.954E-3 
1.951E-3 
1.937E-3 
1.900E-3 
1.810E-3 
1.605E-3 
1.224E-3 
7.374E-4 
3.562E-4 
1.512E-4 
6.050E-5 
2.375E-5 
9.748E-6 
5.371E-6 
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that purpose, the scalar flux at y = 0.0 cm is plotted in Figure 9.9. It can be seen 

from that figure that all of the scalar fluxes display a continuous character through 

the interfaces of the nodes which use different orders of the spherical harmonic 

orders. Another result which is very obvious is that the scalar fluxes for various 

approximations coincide with each other very closely. 

The fourth problem solved by using the nodal method was a criticality problem. 

This problem is a four group, fast reactor type problem and it was taken from 

Kobayashi et al. [18). As seen from Figure 9.10, the problem domain is divided 

into four regions. The lower left corner is the reactor core and the surrounding 

regions are the blanket regions. The sides of the problem bordering the core region 

use the reflective boundary conditions while the outer boundaries use the vacuum 

boundary conditions. The core is a multiplicative region while the multiplication in 

the blanket is very low. The characteristics of the core and the blanket materials are 

given in the Table 9.10. As it was done with Gelbard's problem, this problem has 

also been solved by the conventional and the modular approach. The configuration 

for solving this problem was chosen to be 8x8 nodes. The convergence criterion for 

the outer iteration was l.OE — 5. The results of this problem have been compared 

to Kobayashi's results. The comparisons of the multiplication factors are given 

in Table 9.11. The integrated fluxes for various regions are tabulated in Tables 

9.12 and 9.13. The spherical harmonic distribution in the nodes for the modular 

approach are given in Figure 9.11. 

As can be seen from Table 9.11, the multiplication factors computed by the 

nodal method are in good agreement with Kobayashi's multiplication factors. The 

differences between the nodal method results and Kobayashi's results are smaller 
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Figure 9.9: The scalar flux at y=0.0 as provided by the modular approach 
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Figure 9.10: The geometry and dimensions for Kobayashi's problem 

than 0.07 %. If Tables 9.12 and 9.13 are compared, it is seen that the judgment for 

the multiplication factor is true also for the integrated fluxes. The modular results 

also compare to Kobayashi's results favorably. One important point in the modular 

results is that the computer code did not go to orders higher than the fifth order 

although the allowed maximum order was higher. Therefore, we can assume that 

the problem can be adequately solved by a fifth order approximation. 

The fifth and the last problem solved to test the nodal method is also a criti­

cal! ty problem. The IAEA benchmark problem, which is also known as the EIR-2 

benchmark problem, is a one group problem with anisotropic scattering [49]. The 
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Table 9.10: The neutronic parameters for Kobayashi's problem 

Material 6 "Kg ^«.2—»g ^«,3—«g ' ^*,4— 
CORE 1 0.0994728 0.577 9.94141 0.0629328 0.0 0.0 0.0 

2 0.135722 0.362 8.41624 0.02963 0.124152 0.0 0.0 
3 0.1782531 0.061 9.60889 0.0029 0.0067 0.1670531 0.0 
4 0.2647604 0.0 1.46382 0.0 0.0003 0.0032 0.2545504 

BLANKET 1 0.1249375 0.577 4.83123 0.0696275 0.0 0.0 0.0 
2 0.164042 0.362 0.0 0.04736 0.153532 0.0 0.0 
3 0.2677556 0.061 0.0 0.0512 0.00739 0.2289256 0.0 
4 0.3415301 0.0 0.0 0.0 0.00004 0.00399 0.3324201 
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5 • 

Figure 9.11: Distribution of the spherical harmonic orders for Kobayashi's problem 

Table 9.11: Comparisons of multiplication factors to Kobayashi's results 

Nodal Method Kobayashi 
Pi 1.04475 1.04449 
Pz 1.05016 1.04961 
Pb 1.05034 1.04958 
Pr 1.05038 1.04959 
Modular 1.05020 - -
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Table 9.12: The integrated fluxes provided by the nodal 
method for various regions of the core 

Appr. Order Group Region I Region II Region III 
Pi 1 1.000 5.424E-2 3.998E-3 

2 4.038 6.224E-1 1.153E-1 
3 3.269 7.130E-1 1.666E-1 
4 1.087 3.207E-1 8.726E-2 

Pz 1 1.000 5.040E-2 4.265E-3 
2 4.021 6.018E-1 1.140E-1 
3 3.247 6.957E-1 1.636E-1 
4 1.073 3.137E-1 8.608E-2 

Ps 1 1.000 4.984E-2 4.253E-3 
2 4.016 . 6.003E-1 1.138E-1 
3 3.243 6.943E-1 1.634E-1 
4 1.071 3.131E-1 8.595E-2 

Pt 1 1.000 4.977E-2 4.262E-3 
2 4.015 6.001E-1 1.138E-1 
3 3.242 6.940E-1 1.663E-1 
4 1.071 3.128E-1 8.588E-2 

Modular 1 1.000 5.028E-2 4.253E-3 
2 4.023 6.014E-1 1.139E-1 
3 3.246 6.950E-1 1.635E-1 
4 1.072 3.133E-1 8.600E-2 
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Table 9.13; The integrated fluxes provided by Kobayashi 
for various regions of the core 

Appr. Order Group Region I Region II Region III 
Pi 1 1.000 5.512E-2 4.040E-3 

2 4.046 6.234E-1 1.149E-1 
3 3.275 7.120E-1 1.656E-1 
4 1.084 3.186E-1 8.681E-2 

Pz 1 1.000 5.141E-2 4.263E-3 
2 4.031 6.034E-1 1.138E-1 
3 3.258 6.957E-1 1.632E-1 
4 1.077 . 3.128E-1 8.553E-2 

a 1 1.000 5.113E-2 4.262E-3 
2 4.029 6.028E-1 1.138E-1 
3 3.255 6.955E-1 1.632E-1 
4 1.076 3.126E-1 8.550E-2 

Pr 1 1.000 5.107E-2 4.260E-3 
2 4.028 6.027E-1 1.137E-1 
3 3.255 6.954E-1 1.632E-1 
4 1.076 3.126E-1 8.549E-2 
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Table 9.14: Neutronic parameters for the EIR-2 benchmark problem [49] 

IVIaterial vHf St 
1 0.07 0.079 0.60 0.53 0.27 0.10 
2 0.28 0.0 0.48 0.20 0.02 0.01 
3 0.04 0.043 0.70 0.66 0.30 0.20 
4 0.15 0.0 0.65 0.50 0.15 0.10 
5 .0.01 0.0 0.90 0.89 0.40 0.10 

boundary conditions are vacuum conditions all around the core region. Although 

the scattering cross sections are given up to the third order as can be seen in Table 

9.14, this problem has been solved for the isotropic case. The results used for com­

parison have also been obtained for the isotropic scattering case. The geometry for 

the problem is given in Figure 9.12. The problem has been solved by using a 6x6 

configuration. The outer iteration convergence criterion was chosen to be 1.0f7 —06. 

M. Mordant has solved this problem by using three different computer codes [50]. 

The results presented in Table 2 in his paper are compared to the multiplication 

factor obtained by using the P5 approximation. The Pi and P3 multiplication fac­

tors which are not in the Table 9.15 are 0.99996 and 1.00891 respectively. From the 

comparison given in Table 9.15, it is seen that the multiplication factor computed 

through the nodal method is very close to the results provided by Mordant. The 

largest difference between the nodal method result and those provided by Mordant 

is less than 0.04 %. 
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Figure 9.12: The geometry and dimensions for EIR-2 benchmark problem 
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Table 9.15: Comparisons of the multiplication factors for the EIR-2 problem [50] 

Code Mesh Approximation Multiplication Factor 
NODAL METHOD 6x6 PB 1.00917 
SURCU 64x64 (14,1) 1.00882 
SURCU 64x64 (2,2,2) 1.00890 
TWODANT 120x120 S, 1.00886 
TWOTRAN-NODAL 64x74 Si 1.00889 
ZEPHYR-CD-DOl 72x80 ^ext 1.00880 
ZEPHYR-CD-DOl Fine mesh limit 1.00889 
Error (+/- 2o-) +/- 0.00004 



www.manaraa.com

108 

10 SUMMARY AND CONCLUSIONS 

The purpose of this research was to develop a modular nodal method for solv­

ing the neutron transport equation by using the spherical harmonic approximation. 

The project has been carried out for two-dimensional Cartesian geometry. In the 

development of the modular nodal method, the second order form of the even-parity 

neutron transport equation was used for manipulating the spherical harmonic dif­

ferential equations. The second order spherical harmonic differential equations were 

put into a form such that they could be automatically generated with a computer 

code for any order. The boundary conditions for the spherical harmonic approx­

imation have been manipulated to the same form as the partial currents used in 

diffusion equation applications. An algorithm for generating these boundary condi­

tions automatically for rectangular regions was also developed. The simultaneous 

set of governing equations and boundary conditions were decoupled from each other 

by implementing an iterative scheme for solution. This resulted in a new form of 

the governing equations such that they all have a form analogous to the neutron 

diffusion equation. The modular nodal method was developed by using this final 

form of the governing equations and the boundary conditions. 

In the development of the nodal method, the spherical harmonic moments 

were expanded into fourth order Legendre polynomials. A least squares minimiza­
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tion scheme was used for determining the coefficients of the expansions for the 

spherical harmonic moments. The boundary conditions were implemented in an in­

tegral sense. In addition, the nodes with different orders for the spherical harmonic 

approximations were interfaced. An algorithm was developed for determining the 

spherical harmonic approximation order in each individual node. 

The results of this dissertation can be evaluated by observing the following 

features of the developed method. One of the conditions a numerical method should 

satisfy is numerical stability of the method. The other condition which should be 

satisfied is the accuracy of the numerical scheme. In addition, if iterative schemes 

are employed by a numerical method, they should converge to a solution. A fourth 

condition which must be satisfied is that the modular method must comply with 

the physics of the problems and provide accurate results. 

The stability of the numerical method was studied through Fletcher's problem. 

In that study, it was shown that the scalar flux values converge to some limiting 

values as the nodal sizes decrease. While the differences between the scalar flux 

values for the 4x4 and 5x5 nodal configurations were on the order of 0.1, the same 

quantity was 0.001 for the 6x6 and 8x8 nodal configurations. In addition, the 

results of the 4x4 nodal configuration were within a range reflecting the physics of 

the problem. Therefore, we can say that the stability condition were satisfied by 

the method. 

The second test was the accuracy test. The accuracy was studied for five 

test problems. In Fletcher's problem, the scalar flux results agreed with Fletcher's 

results with a difference on the order of 1.0% while that difference increased signif­

icantly at the corner of the diagonal for the source region. For Natelson's problem, 
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the scalar flux results were within the 1.0% range of Kobayashi's results. For Gel-

bard's problem, the results were practically the same as the reference solutions 

except for P3 approximation. For Kobayashi's criticality problem, the differences 

between the nodal method and Kobayashi's multiplication factors were less than 

0.07%. The multiplication factor calculated for the EIR-2 benchmark problem were 

within 0.04% away from the results published by Mordant. These results show 

that the method passes the accuracy test although some questions arose from the 

comparison to Fletcher's problem. 

Another consideration was to check how the implemented iterative schemes 

performed. The outer iteration, or the source iteration, and the middle iteration 

schemes converged for all test problems. The inner iteration seemed to have con­

vergence problems for the spherical harmonic approximation orders higher than Pj. 

Since the Pj approximation was high enough to solve most problems successfully, 

this did not pose any difficulty for these test problems. 

The modular approach was tested for Gelbard's and Kobayashi's problems. 

The method has been successful in implementing automatic ordering of the spherical 

harmonic approximation in accordance with geometry for the specific problem. The 

method provided reasonably accurate results comparable to P5 solutions although 

higher orders were used in some portions of the domain. One other important point 

is that the scalar flux was observed to be continuous at the interfaces where the 

spherical harmonic approximations were changed. 

As a result of the discussion above, we can say that the modular nodal method 

is successful in meeting the goals of this research project. As with any research, 

many new questions appear. The inner iterative scheme requires more attention for 
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solving the convergence problem for high order spherical harmonic approximations. 

Also we need to further study the accuracy of the modular implementation. 
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11 SUGGESTIONS FOR FUTURE WORK 

It is suggested that further study be conducted for the following areas. 

1. The convergence properties of the inner iteration, where the simultaneous 

spherical harmonic differential equations are solved iteratively, should be stud­

ied in more depth and the convergence problems for some of the high orders 

of the spherical harmonics approximation should be resolved. 

2. The convergence properties of the middle iteration, where the nodes are decou­

pled from each other and solved iteratiVely, can be studied and the convergence 

rate of that iteration enhanced. 

3. The modular approach uses a relatively primitive scheme for choosing spher­

ical harmonic orders for the nodes. Therefore, nodes implementing low order 

approximations can be seen among nodes using higher orders of the spherical 

harmonic approximation. A more sophisticated scheme can be devised for 

automatic ordering purpose. In addition, further work can be carried out for 

improving the accuracy of the modular method. 

4. The current method can handle only isotropic scattering. Anisotropic scat­

tering capability should be added to the method. This requires major modi­

fications both in the nodal formulation and in the computer code. 
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5. The method can be extended to the three dimensional problems. This ex­

tension requires considerable amount of work in two areas. One of these is 

the manipulation of the spherical harmonic equations in three dimensions. 

A recurrence relation should be developed for generating three dimensional 

second order spherical harmonic equations automatically as was done in this 

dissertation for two dimensional problem. The other area is manipulation 

and generation of the boundary conditions in an automatic manner. If the 

least squares minimization approach is used for developing the nodal equa­

tions, these equations can be developed by using the three dimensional nodal 

method as the reference method. 
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14 APPENDIX 

The expressions given below are for calculating the coefficients used in the 

recurrence relations for generating the second order spherical harmonic differential 

equations. 

Ai = - (4r + lOr + 2/ - 4) 4- {Al - 2)m' 

A2 = - [(4/2 + 2/2 - 6/) + (4/ + 6)m^ 

.43 = 32/3 + 48/2 _ 8/ _ 12 

B-i = — (4 /3 4. 2/2 _ 6/) _ (8/2 +8/- 6)m + (4/ + 6)m^ 

B2 = - [(4/3 + 10/2 + 2/ - 4) + (8/2 + 8/ - 6)m + (4/ - 2)^2 

Ci = (1 + 6(2 - m))(3 + 2/) 

C2 = (2/^ - 9/^ + 4/3 + 21/2 - 18/) - (8/^ - 24/3 _ io/2 ^ 54/ _ i8)m + 

(12/3 - 18/2 - 32/ + 33)m2 - (8/2 - 18)^3 + (2/ + 3)^4 

(^3 = (1 + 6(2 — m,))(l — 2/) 
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Q  =  - ( l  +  ̂ (2- m ))(2Z + 3) 

C5 = -(2/^ 4- 3/"^ - 4/2 - 3/2 + 21) + (8/2 + 4/^ - 8/ + 2)m + 

(4/3 ^ 2/2 - 12/ + 5)rn? - (8/ - 4)m2 - (2/ - l)m'^ 

Ce = -(2/^ + 7/"^ + 4/2 - 7/2 - 6/) + (8/2 + 20/2 + 8/ - 6)m + 

(4/2 + 10/2 - 4/ - 15)m2 - (8/ + 12)^2 - (2/ 4- 3)m'^ 

Cj =  ( 1  +  6 ( 2  - m ) ) ( 2 / -  1 )  

Cg = (2/^ + 19/4 + 60/2 ^ 65/2 _ 3/ _ 24) + (8/4 + 56/2 + i io/2 + 39/ _ 50)m + 

(12/2 ^ 54/2 ^ 40/ _ 35)^2 ^ (g/2 ^ _ 10)^8 ̂  (g/ _ 1)^4 

= 2C^ for 1 = 1,2,3,4,5,6,7,8 

= i4^ for i = 1,2,3 

B i  =  B i  f o r  i  =  1 , 2  

C i  =  C j  f o r  i  =  1 , 2 , 3 , 4 , 5 , 6 , 7 , 8  

Di = Di for 1 = 1,3,4,7 

jD^ = — /or z = 2,5,6 
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